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La funciéon exponencial de Dunkl definida como un limite

Existe una funcién E,(t), dependiente de un pardmetro o > —1, que generaliza
la funcién exponencial €!, a la cual se reduce cuando se toma o = —1/2. La funcién
E,(t) —denominada exponencial de Dunkl— se define por medio de la serie
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por supuesto, v, —1/2 = k!. Hay muchos conceptos matemédticos involucrados que se
generalizan con este mismo parametro «, por ejemplo la derivada de Dunkl

20+ 1 f(z) — f(—=x)

Aaf(@) = /() + = _

(obviamente, A_; /5 = %); existe también una transformada de Dunkl que generaliza
la de Fourier, un sistema ortogonal que generaliza a {e*™'};cz, etc. ;Pero cémo
generalizar la conocida expresién
. i\

lim (1 + 7) =l

n— 00 n
a este contexto? Hay que recurrir a la denominada traslacion de Dunkl, que es un
operador 7,, (con y € R) que se define sobre una amplia clase de funciones y

estd especificamente adaptado. Por ejemplo, con F, ya no es verdad E,(z + y) =
Eo(2)Ea(y), sino 7o 4 (Eq)(x) = Eq(x)Eq(y). Para f(z) = 2™, lo que hace 744 es
n
n n k, n—k n Tn,a
Ta, : x) = €T s = y
(7)) =3 (k) y (k) .
que en el caso v = —1/2 se reduce al binomio de Newton (z-+y)" = >_1_, () z*y"~*.

PROPOSICION. Se cumple
lim 71 (()7) (t/n) = Ea(t).

DEMOSTRACION. Usando las estimaciones asintéticas de la funcién Gamma (férmula
de Stirling), es una simple comprobacién ver que, en

Tan (") (t/n) = i _ e (j)k _ i _ma gk

E—0 'Yk,o/}/n—k,a n k=0 '-Yk,a')/n—k,ank

el cociente 77’;7”% tiende a 1 cuando n — oo, de donde se sigue el resultado. [
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