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La función exponencial de Dunkl definida como un límite

Existe una función Eα(t), dependiente de un parámetro α > −1, que generaliza
la función exponencial et, a la cual se reduce cuando se toma α = −1/2. La función
Eα(t) —denominada exponencial de Dunkl— se define por medio de la serie

Eα(t) =
∞∑

k=0

tk

γk,α
, γk,α =

2kΓ
(
α + 1 + ⌊(k + 1)/2⌋

)
⌊k/2⌋!

Γ(α + 1) ;

por supuesto, γk,−1/2 = k!. Hay muchos conceptos matemáticos involucrados que se
generalizan con este mismo parámetro α, por ejemplo la derivada de Dunkl

Λαf(x) = f ′(x) + 2α + 1
2

f(x) − f(−x)
x

(obviamente, Λ−1/2 = d
dx ); existe también una transformada de Dunkl que generaliza

la de Fourier, un sistema ortogonal que generaliza a {ekπi}k∈Z, etc. ¿Pero cómo
generalizar la conocida expresión

ĺım
n→∞

(
1 + t

n

)n

= et

a este contexto? Hay que recurrir a la denominada traslación de Dunkl, que es un
operador τα,y (con y ∈ R) que se define sobre una amplia clase de funciones y
está específicamente adaptado. Por ejemplo, con Eα ya no es verdad Eα(x + y) =
Eα(x)Eα(y), sino τα,y(Eα)(x) = Eα(x)Eα(y). Para f(x) = xn, lo que hace τα,y es

τα,y((·)n)(x) =
n∑

k=0

(
n

k

)
α

xkyn−k,

(
n

k

)
α

= γn,α

γk,αγn−k,α
,

que en el caso α = −1/2 se reduce al binomio de Newton (x+y)n =
∑n

k=0
(

n
k

)
xkyn−k.

Proposición. Se cumple

ĺım
n→∞

τα,1
(
(·)n

)
(t/n) = Eα(t).

Demostración. Usando las estimaciones asintóticas de la función Gamma (fórmula
de Stirling), es una simple comprobación ver que, en

τα,1
(
(·)n

)
(t/n) =

n∑
k=0

γn,α

γk,αγn−k,α

( t

n

)k

=
n∑

k=0

γn,α

γk,αγn−k,αnk
tk,

el cociente γn,α

γn−k,αnk tiende a 1 cuando n → ∞, de donde se sigue el resultado.
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