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Una breve introducción al método de Monte Carlo

por

Elena Castilla y Pedro J. Chocano

Resumen. Hacemos un repaso al origen y evolución del método de Monte
Carlo, explicando alguna de las técnicas más importantes para la generación de
números y variables aleatorias. También repasamos algunos tests para compro-
bar si nuestros datos son aleatorios o bien provienen de una distribución dada.
Por último, comentamos algunas aplicaciones básicas del método de Monte
Carlo, como la metodología bootstrap o la aproximación de integrales defini-
das y soluciones de ecuaciones diferenciales.

El método de Monte Carlo, también conocido como simulación de Monte Carlo o
simplemente como simulación estocástica [34, 35], fue definido por Halton (1970, [19])
como «un método para calcular un parámetro de una hipotética distribución, usando
una secuencia de números aleatorios para construir una muestra de esta población y,
a partir de ella, calcular su estimación estadística». Aunque puede variar, el método
de Monte Carlo suele tener la siguiente estructura:

i. Definir un espacio muestral de posibles datos o inputs.
ii. Generar datos en ese domino mediante una distribución de probabilidad de-

terminada.
iii. Realizar un cálculo determinístico a partir de esos datos generados.
iv. Aplicar estos cálculos al resultado final.

Un ejemplo clásico de divulgación del método de Monte Carlo es el de la estimación
de la superficie de un lago. Supongamos que tenemos un lago cuya superficie des-
conocemos, pero este lago está dentro de un terreno cuya área sí es conocida, por
ejemplo, un cuadrado o rectángulo. Se dispone de una máquina que dispara al azar
n bolas de goma en esta área (ver la figura 1).

Tras hacer una tanda de disparos, contamos el número de bolas que han caído al
lago, k (que también se puede contar como n − m, donde m es el número de bolas
que han caído fuera del lago). Entonces, se puede establecer la siguiente relación:

área(lago)
área(terreno) ≈ k

n
,

área(lago) ≈ k

n
× área(terreno).
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Figura 1: Estimación de la superficie de un lago.

Este mismo método puede utilizarse para estimar el valor de π. Si tomamos un
cuadrado de perímetro 4l su circunferencia inscrita tendrá radio l/2. Si generamos n
puntos aleatorios en el cuadrado (ver la figura 2), se tiene la siguiente aproximación:

área(círculo)
área(cuadrado) = π(l/2)2

l2 = π

4 ≈ k

n
,

donde k es el número de puntos que caen dentro de la circunferencia. Así, una
estimación de π puede realizarse mediante

π ≈ 4k

n
.

Naturalmente, la estimación mejorará cuanto mayor sea la cantidad de números

Figura 2: Estimación de π.

generados, y dependerá de que estos se generen de manera totalmente aleatoria y
uniformemente en el cuadrado. Es por tanto necesario desarrollar una técnica ade-
cuada para la generación de estos números. A lo largo de este artículo hacemos un
repaso al origen y evolución del método de Monte Carlo, explicando alguna de las
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técnicas más importantes para la generación de números y variables aleatorias. Tam-
bién proporcionaremos tests para la comprobación de aleatoriedad o de que nuestros
datos provienen de una distribución dada e introduciremos el bootstrap como ma-
yor representante de las llamadas técnicas de remuestreo. Por último, comentaremos
algunas aplicaciones básicas del método de Monte Carlo, como la aproximación de
integrales definidas o de soluciones de ecuaciones diferenciales.

1. Orígenes del Método de Monte Carlo

En 1777, Georges Louis Leclerc, conde de Buffon, resolvió un problema planteado
por él mismo años antes y que ahora conocemos como el problema de la aguja de
Buffon. Esta solución fue publicada en el Suplemento IV de la enciclopedia Histoire
Naturelle [7] escrita entre otros por el propio Buffon durante 50 años, y en la que se
intentó plasmar todo el saber de la época concerniente a la ciencia (figura 3). Años
después, Laplace [23] corrigió un error en la solución, por lo que algunos autores
también se refieren a este problema como el de la aguja de Buffon-Laplace.

El problema consiste en lanzar una aguja de longitud l sobre un papel en el
que se han trazado rectas paralelas distanciadas entre sí una cantidad t, con l ≤ t.
Buffon se preguntaba por la probabilidad de que la aguja cruzara alguna de las
líneas. Se puede demostrar que dicha probabilidad es 2l

tπ . Por tanto, podemos hacer
una estimación del número π repitiendo el experimento un número suficientemente
alto de veces. Así, si n es el número total de intentos y k el número de veces que la
aguja ha cruzado alguna línea, tenemos

π ≈ 2nl

tk
.

En 1901 el matemático italiano Lazzarine [24] realizó el experimento de Buffon uti-
lizando una aguja de l = 2.5 cm y líneas de t = 3 cm de separación. De 3408 agujas,
1808 cruzaron la línea, dando una aproximación de

π ≈ 2 × 3408 × 2.5
3 × 1808 = 355

133 = 3.1415929 . . .

Dado que π = 3.1415926 . . ., la aproximación de Lazzarine dio una precisión de
¡seis decimales! Una interesante discusión sobre este experimento puede encontrarse
en [2]. Hoy en día hay muchas aplicaciones en internet que permiten simular el
experimento de la aguja de Buffon de una manera bastante ilustrativa, por ejemplo,
https://mste.illinois.edu/activity/buffon/.

Muchos autores consideran el experimento de la aguja de Buffon como el origen
del método de Monte Carlo. Sin embargo, esta terminología no fue usada hasta
200 años después por el matemático Nicholas Metropolis, a mediados de siglo XX.
Según el propio Metropolis, dos fueron los motivos del desarrollo de estas técnicas:
(1) la aparición de las primeras computadoras, como por ejemplo la ENIAC [15],
y (2) el trabajo del propio Metropolis con Stanislaw Ulam y John Von Neumann
para resolver el problema de difusión de neutrones en material fisionable usando el
muestreo estadístico, ya que este problema era analíticamente intratable.

https://mste.illinois.edu/activity/buffon/
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Figura 3: El problema de la aguja de Buffon.

Cuentan que Ulam, mientras hacía solitarios con una baraja de cartas, se planteó
cómo calcular la probabilidad de ganar una partida. Como los cálculos combinatorios
podían resultar demasiado tediosos, a Ulam se le ocurrió si, en lugar de hacer estos
cálculos, podría emular una gran cantidad de partidas y contar los casos favorables.
Ulam pensó rápidamente en cómo poder aplicar su idea a cuestiones físicas como el
problema de la difusión de neutrones, entre otros. Poco después, en 1946, le comenta
sus ideas a Metropolis y Von Neumann y comienzan a realizar cálculos. Esta técnica
fue aplicada en el conocido proyecto Manhattan para la resolución de muchos de los
problemas complejos que surgieron durante la creación de la bomba atómica. Fue en
1949 cuando Metropolis y Ulam usaron por primera vez el término «Monte Carlo»
en un texto científico [30].

2. Generación de números (pseudo)aleatorios

La primera tabla conocida de números aleatorios fue publicada en 1927 por Leo-
nard Henry Caleb Tippet [38], un estudiante de Karl Pearson. La tabla de números
aleatorios de Tippet consiste en 41 600 dígitos agrupados en 10 400 números de 4
cifras, y fue presentada en un total de 26 páginas, cada una de ellas con 32 columnas
y 50 filas. Estos números fueron cogidos de forma «aleatoria» del registro del censo,
provocando la primera lista de números aleatorios con periodo 10 000. Otra tabla
muy conocida de números aleatorios fue dada por Fisher y Yates en 1938. Esta tabla
constaba de 10 000 cifras tomadas «aleatoriamente» de las tablas de logaritmos [13].

Una de las tablas más usadas fue la generada por la Corporación RAND, una
organización que ofrecía servicios de investigación a las Fuerzas Armadas de Estados
Unidos, en el año 1955, con el objetivo de ser usada en aquellos experimentos en los
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que se aplicaba el incipiente método de Monte Carlo. La tabla RAND, también
conocida como la tabla de un millón de dígitos por su tamaño (ver figura 4), fue
presentada en 400 páginas, cada una conteniendo 50 líneas de 50 dígitos, agrupados
de cinco en cinco (oscilando entre el 00000 y el 99999), así como en forma de tarjetas
perforadas. Los números fueron generados de manera física con una rueda de ruleta
conectada a una computadora, y luego fueron cuidadosamente filtrados antes de ser
pasados a la tabla [6].

Figura 4: Un millón de dígitos aleatorios.

En los años posteriores, la aparición de ordenadores de alta velocidad promovió
el desarrollo de métodos de generación de números pseudoaleatorios, evitando así
tener que leerlos de tablas de tamaños inabarcables. Una secuencia de números se
considera pseudoaleatoria si es aparentemente aleatoria, aunque se haya producido
bajo un proceso totalmente determinístico y reproducible. En concreto, se parte de
un número original (semilla) a partir del cual, y por un método determinístico, se
produce una secuencia de números aleatorios que siguen una distribución uniforme
en el intervalo [0, 1].

2.1. Método de Von Neumann

Uno de los primeros métodos para generar números pseudoaleatorios es el mé-
todo de los cuadrados medios propuesto por Von Neumann en 1946 y publicado en
1951 [31]. Como Von Neumann comenta en su artículo, si cogiéramos las diez ci-
fras centrales de un número de diez cifras elevado al cuadrado e iteráramos, se irían
gradualmente mezclando los dígitos produciendo cierta pseudoaleatoriedad. De ma-
nera general, el método de los cuadrados medios de Von Neumann consiste en los
siguientes pasos:

i. Elegir un número par de n cifras, x0 (semilla).
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ii. Elevar x0 al cuadrado, x2
0.

iii. Tomar los n dígitos centrales de x2
0, obteniendo x1.

iv. Volver al paso ii y repetir el proceso.
v. Para producir números en el intervalo [0, 1], dividir la secuencia entre 10n:

ui = xi

10n
.

Véase un esquema visual del método en la figura 5. La secuencia obtenida a
partir de un cierto punto en adelante será nuestra secuencia de números pseudo-
aleatorios. Este método tiene sus desventajas; por ejemplo, los números generados
pueden repetirse cíclicamente después de un periodo (la longitud del ciclo) corto.

xi
3708

13749264

7492

x2
i

xi+1

Método
de

Von Neumann

Figura 5: Método de Von Neumann.

2.2. Métodos congruenciales

Los generadores congruenciales lineales fueron introducidos por Lehmer en 1951
[25]. Decimos que dos enteros a y b son congruentes (módulo m) si a − b es múltiplo
de m. Un método congruencial consiste en:

i. Elegir un número x0 inicial (semilla).
ii. Para i ≥ 1 obtener de manera recursiva

xi = axi−1 + b módulo m.

ii. Para producir números en el intervalo [0, 1], dividir la secuencia entre m:

ui = xi

m
.

Si b = 0, se dice que es un generador multiplicativo y, en caso contrario, se dice
que es mixto. La pseudoaleatoriedad de los métodos congruenciales se refleja en la si-
guiente proposición, donde se observa de forma clara tanto el algoritmo determinista
que es empleado como que condiciones iniciales iguales producen mismos resultados.
Proposición 1. Si se aplica un método congruencial, se verifica

xi = aix0 + b
ai − 1
a − 1 módulo m.
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Un gran inconveniente de este método es que los valores ui solo pueden tomar
valores i/m, i = 0, . . . , m. Además, es inevitable que se produzcan ciclos, ya que el
periodo nunca puede exceder al módulo. Así, se tiene que tomar un valor suficiente-
mente grande de m para que el conjunto de posibles valores de la sucesión se asemeje
a la de una variable continua uniforme en el intervalo [0, 1] y que el ciclo no sea de-
masiado corto. En concreto, nos podemos preguntar cómo elegir los parámetros para
que el ciclo sea completo, es decir, para que se atraviesen todos los posibles estados
(números) antes de volver a la semilla original. Hull y Dobell establecieron en 1962
[21] el siguiente teorema:
Teorema 2. Un generador congruencial tiene periodo completo si y solo si se cum-
plen las siguientes condiciones:

1. m y b son primos entre sí.
2. Si q es un número primo que divide a m, entonces q divide a (a − 1).
3. Si 4 divide a m, entonces 4 divide a (a − 1).
Nótese que un generador de ciclo completo lo es con independencia de la semilla

x0 escogida. Sin embargo, los generadores de ciclo no completo tendrán diferente
longitud dependiendo de la semilla escogida.

En la década de los 70, fue muy difundido el generador multiplicativo RANDU,
implementado en IBM, con a = 216 + 3, b = 0, m = 231 y x0 un número impar. Sin
embargo, este generador es considerado como uno de los peores generadores de nú-
meros aleatorios creados [14]. Como Marsaglia destacó ya en 1968 [28], un problema
asociado con los métodos congruenciales es su naturaleza «reticular». La secuencia
de valores generados se sitúa en un número normalmente bajo de hiperplanos pa-
ralelos, que dependerá de la elección de los parámetros (véase la figura 6, donde el
eje de abscisas representa el número de iteraciones y el eje de ordenadas el valor
asociado a la iteración). En particular, para el generador RANDU, se puede demos-
trar que el número de hiperplanos es 15, en un cubo de dimensión 3. Este generador
fue sistemáticamente desapareciendo, aunque algunos compiladores de FORTRAN
lo mantuvieron hasta finales del siglo XX.

2.3. Cómo comprobar la aleatoriedad (test de Wald-Wolfowitz)

Este test, también conocido como test de las rachas, debe su nombre a los estadís-
ticos Abraham Wald y Jacob Wolfowitz ([39], 1940) que lo presentaron originalmente
como un test no paramétrico para comprobar si dos muestras vienen de la misma
población. En su versión más conocida, es un test para comprobar la aleatoriedad
de una secuencia de datos. Para aplicarlo, necesitamos los siguientes supuestos:

1. Los datos deben considerarse en el orden de ocurrencia.
2. Los datos deben reducirse a dos posibles valores.

Definimos una «racha» como una serie de valores consecutivos iguales. Por ejemplo,
en la secuencia de 20 elementos

+ + + − − + − + − + + − − + + − + − −−



94 Una breve introducción al método de Monte Carlo

Figura 6: Generadores congruenciales. Imágenes generadas con [4].

tendremos 12 rachas, 6 correspondientes al símbolo «+» y 6 correspondientes al
símbolo «−». Se puede demostrar que, bajo la hipótesis nula de aleatoriedad de la
muestra, el número total de rachas se comporta asintóticamente como una normal
de media µ y varianza σ2, con

µ = 2n1n2

n1 + n2
+ 1, σ2 = (µ − 1)(µ − 2)

n1 + n2 − 1 ,

donde n1 y n2 son el número de elementos asociados a cada una de las dos categorías.
Así, dada una secuencia de valores en el orden original y categorizada en dos

clases, se calcula el estadístico
Z = N − µ

σ
,

donde N es el número total de rachas observado. Dado un nivel de significación α, la
hipótesis de aleatoriedad se rechaza si |Z| ≥ Zα/2, donde Zα/2 es el cuantil 1 − α/2
de la distribución normal estándar.
Ejemplo 3. En una clase se anota el género de 20 alumnos a la hora de entregar
el examen. Se desea conocer con un nivel de significancia del 5 % si la posición de
alumnos y alumnas es aleatoria. En la muestra aparecen 10 alumnos y 10 alumnas,
y el número de rachas es igual a 12. La colocación de los alumnos es como sigue:

♀♂♂♀♀♂♂♀♂♀♀♂♂♀♂♀♀♀♂♂
En este caso, |Z| ≈ 0.46 < Z 0.05

2
= 1.96, por lo que no rechazamos la hipótesis de

aleatoriedad. En otra clase se ha obtenido la siguiente sucesión:

♀♀♀♀♀♀♀♀♀♀♂♂♂♂♂♀♀♀♀♀
En este caso tenemos 5 alumnos y 15 alumnas, N = 3 y |Z| ≈ 3.43 > 1.96, por lo
que rechazamos la hipótesis de aleatoriedad.
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El test de Wald-Wolfowitz puede utilizarse para comprobar la aleatoriedad de
una secuencia de números aleatorios tomando los números en el mismo orden de la
secuencia y marcando con «+» si el número es mayor que la media (o mediana o
cualquier otro estadístico a considerar) y con «−» si es menor que el valor elegido.
Ejemplo 4. Dada la sucesión

0.50 0.51 0.89 0.98 0.74 0.91 0.51 0.62 0.34 0.24
0.19 0.72 0.83 0.08 0.54 0.04 0.01 0.36 0.16 0.28
0.18 0.01 0.95 0.69 0.22 0.49 0.23 0.32 0.82 0.60
0.31 0.42 0.73 0.04 0.83 0.45 0.13 0.57 0.63 0.44

la sucesión de signos asociados (considerando la media como punto crítico) es

+ + + + + + + + − − − + + − + − − − −−
− − + + − + − − + + − − + − + − − + +−

Entonces N = 18 y n1 = n2 = 20. En este caso |Z| ≈ 0.96 < 1.96, por lo que a un
nivel de significación del 5 % no rechazamos la hipótesis de aleatoriedad.

En la siguiente sección veremos algunas técnicas para la generación de varia-
bles aleatorias (continuas) a partir de números aleatorios que, como hemos visto,
generalmente se considera que pertenecen a una variable aleatoria uniforme de in-
tervalo [0, 1].

3. Generación de variables aleatorias continuas

3.1. Método de la transformada inversa

El método de la transformada inversa, probablemente el método más «sencillo»
para la generación de variables aleatorias, se basa en el siguiente resultado:
Proposición 5. Supongamos una variable aleatoria X que tiene función de dis-
tribución continua FX(x) estrictamente creciente siempre que 0 < FX(x) < 1. Sea
U una variable aleatoria que sigue una distribución uniforme en el intervalo (0, 1),
U ∼ U(0, 1). Entonces, la variable aleatoria F −1

X (U) tiene como función de distri-
bución a FX .

El método de la transformada inversa para generar valores de una variable alea-
toria X descrita por una función de distribución FX(x) consiste en los siguientes
pasos:

i. Se genera un número aleatorio u de una variable aleatoria U(0, 1).
ii. Se calcula x = F −1

X (u).
Ejemplo 6. Vamos a generar valores de una variable aleatoria exponencial mediante
el método de la transformada inversa. Si X ∼ Exp(λ), FX(x) = 1 − exp(−λx). Si
hacemos u = FX(x), entonces

u = 1 − e−λx,

x = − log(1 − u)
λ

.
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Nótese que U ∼ U(0, 1) implica que 1 − U ∼ U(0, 1), por lo que el método de
la transformada inversa se simplificaría en: dado un número aleatorio u de una
variable aleatoria U(0, 1), calcular

x = − log(u)
λ

.

Ejemplo 7. Vamos a generar valores de una variable aleatoria Gamma mediante
el método de la transformada inversa. En este caso, si X ∼ Gamma(n, λ) y

FX(x) =
∫ x

0

λn

(n − 1)! exp(−λy)yn−1 dy,

no es posible aplicar el método de la transformada inversa de forma directa. Sin em-
bargo, podemos utilizar la siguiente propiedad: Sean X1, . . . , Xn variables aleatorias
independientes tales que Xi ∼ Exp(λ) para todo i; entonces

n∑
i=1

Xi ∼ Gamma(n, λ).

Por tanto, se puede usar el siguiente algoritmo:
i. Generar u1, . . . , un independientes de una variable aleatoria U(0, 1).

ii. Calcular x = −
∑n

i=1
log(ui)

λ .
Aunque este método es aplicable a cualquier función continua, a veces no es

posible encontrar una función explicita para F −1
X (u) o, en caso de poderse, puede

suceder que su evaluación requiera demasiado tiempo de computación.

3.2. Método de rechazo

Este método fue propuesto por Von Neumann (ver la figura 7) en su ya citado
artículo Various techniques used in connection with random digits (1951, [31]). Su-
pongamos que queremos generar valores de una variable aleatoria X con función de
densidad f(x). Supongamos también que sabemos muestrear una variable aleatoria
Y con función de densidad g(x) tal que supx f(x)/g(x) ≤ c, con c > 0. El método del
rechazo (también llamado de aceptación y rechazo) consiste en los siguientes pasos:

i. Generar u de una variable aleatoria U(0, 1) e y de la variable aleatoria Y .

ii. Si u ≤ f(y)
cg(y) , hacer x = y.

iii. En caso contrario, volver al paso i.

Ejemplo 8. Supongamos que queremos generar valores de la variable aleatoria X ∼
Beta(α, β), cuya función de densidad es

f(x) = B(α, β)xα−1(1 − x)β−1,
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Figura 7: John Von Neumann (1903–1957), uno de los padres de la simulación
estadística.

donde B(α, β) =
∫ 1

0 xα−1(1 − x)β−1 dx. Supongamos el caso particular α = β. Esto
es: f(x) = B(α, α)(x(1 − x))α−1. Cojamos g de una uniforme U(0, 1). Se puede
demostrar fácilmente que

f(x)/g(x) = f(x) ≤ B(α, α)(1/4)α.

Así, aplicando el método del rechazo:
i. Generar u1 y u2 independientes de una variable aleatoria U(0, 1).

ii. Si u2 ≤ 4α(u1(1 − u1))α, hacer x = u1.
iii. En caso contrario, volver al paso i.

Nótese que, en este caso, no es necesario calcular B(α, α).
El método de aceptación y rechazo es un método alternativo al de inversión

cuando se dispone de una función de densidad sencilla de acotar.

3.3. Cómo comprobar que los datos pertenecen a una distribución

3.3.1. Test de la χ2 de Pearson

Este test fue introducido por Karl Pearson en 1900 ([32], véase la figura 8). En
este artículo Pearson critica las prácticas habituales en esa época, en las que se tendía
a asumir que los datos seguían una distribución normal. En particular, cita el trabajo
de George Biddell Airy en su libro Theory of Errors of Observation [1]. La prueba de
la chi-cuadrado permite contrastar si nuestros datos provienen de una distribución
en concreto, digamos F0(x), que consideramos aquí totalmente especificada.

Supongamos que tenemos n observaciones en una muestra aleatoria clasificados
en k > 1 clases disjuntas. Para cada j ∈ {1, . . . , k}, denotemos como Oj al número
de observaciones de cada clase y como ej al número de observaciones esperadas
(suponiendo que lavariable aleatoria X sigue la distribución F0), calculada como
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Figura 8: Pearson introduce el test de la χ2.

ej = npj , con pj la probabilidad de caer en la j-ésima clase. El estadístico de
Pearson viene dado por

χ2 =
k∑

j=1

(Oj − ej)2

ej
,

que sabemos que asintóticamente se comporta como una χ2 con k − 1 grados de
libertad. Así, bajo un nivel de significación α, si χ2 ≥ χ2

k−1,α se rechaza la hipótesis
de que nuestra muestra provenga de F0(x).

Mann y Wald presentaron en 1942 [27] una técnica para decidir el número óptimo
de intervalos para aplicar el test de la χ2. La idea era elegir los intervalos de tal
manera que la probabilidad de rechazar F0(x) como verdadera distribución, siendo
F1(x) la distribución verdadera, nunca fuera menor que 0.5.
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3.3.2. El test de Kolmogorov-Smirnov

Supongamos que tenemos n observaciones independientes e idénticamente dis-
tribuidas x1, . . . , xn. El estadístico de Kolmogorov-Smirnov (en ocasiones abreviado
como K-S) para una función de distribución dada viene dado por

D = sup
x

|Fn(x) − F0(x)|,

donde Fn(x) es la función de distribución empírica, definida como

Fn(x) = 1
n

n∑
i=1

I(−∞,x](xi),

donde I(−∞,x](xi) es la función indicatriz, igual a 1 si xi ≤ x y a 0 en caso contrario.
Dado un nivel de significación α, la hipótesis de que los datos provengan de la
distribución F0(x) se rechaza si

D ≥ Dn,α,

siendo Dn la distribución de Kolgomorov-Smirnov.
Este test fue propuesto independientemente por los matemáticos rusos Andréi

Kolgomorov [22] y Nikolai Smirnov [36] en 1933 y 1939, respectivamente. Mientras
que la distribución asintótica del estadístico D fue derivada en ambos trabajos, una
primera tabla con los valores de la correspondiente distribución fue presentada por
Smirnov en [37]. Destacamos los trabajos de Feller [12] y Doob [10], que simplifi-
caron y unificaron la teoría de ambos. Uno de los primeros autores en hacer una
comparación entre el test de la χ2 de Pearson y el de Kolgomorov-Smirnov fue F. J.
Massey en 1951 [29], artículo que ya presentaba un pequeño estudio de Monte Carlo.
Algunas de las conclusiones obtenidas por Massey fueron las siguientes:

1. En general no podemos saber la potencia del test de la χ2 (Mann y Wald [27],
por ejemplo, consideraban solo el caso 0.5), mientras que es sencillo calcular
una cota inferior de la potencia de D.

2. A diferencia del test de Kolgomorov-Smirnov, el test de la χ2 depende de
agrupar las observaciones, con lo que podemos perder información.

3. El test de Kolgomorv-Smirnov no se puede aplicar directamente a distribucio-
nes discretas, mientras que el de la χ2 sí.

En el caso en que la hipótesis nula corresponda a toda una familia paramétrica en
la que el parámetro no está especificado y hay que estimarlo, el contraste de bondad
de ajuste de la χ2 podría llevarse a cabo mediante la modificación de los grados de
libertad de este. Por otra parte, es posible llevar a cabo el contraste de Kolmogorov-
Smirnov para una hipótesis nula que corresponda a una familia paramétrica en la
que el parámetro no esté especificado y haya que estimarlo mediante técnicas de
computación intensiva como el bootstrap, el cual desarrollamos más adelante.
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4. La ley de los grandes números

La inferencia estadística es el conjunto de métodos que permiten inducir, a través
de una muestra estadística, el comportamiento de una determinada población. A ma-
yor cantidad de datos, mayor será la precisión de nuestras técnicas. Esta afirmación,
que hasta ahora hemos asumido como «natural» o «intuitiva», puede justificarse de
manera teórica gracias al siguiente resultado:
Teorema 9 (Ley fuerte de los grandes números). Sea F una distribución de proba-
bilidad en Rd, A un conjunto medible en Rd y Fn la distribución empírica asociada
a una muestra de tamaño n de F . Entonces,

Fn(A) c.s.−→
n→∞

F (A),

donde c.s. denota la convergencia casi segura.
El matemático italiano Gerolamo Cardano (1501–1576) en su manual para juegos

de azar Liber de Ludo Aleae editado en 1663 [9] (aunque escrito mucho antes),
ya destacó, sin pruebas, que «cuantas más partidas se celebran de un juego de
azar mejor predice la probabilidad matemática el resultado». Sin embargo, tuvieron
que pasar cien años hasta que Jacob Bernoulli (1654–1705) en el Ars Conjectandi
(1713, [3]) publicara la primera formulación de la ley de los grandes números para
una variable aleatoria binaria. Este resultado, al que Bernoulli se refirió como su
«teorema dorado» y al que otros muchos conocen como «teorema de Bernoulli»,
fue denominado por primera vez como «ley de los grandes números» por Poisson
en 1837 [33]. Hay versiones variadas de la ley de los grandes números probadas por
matemáticos como Khinchin, Kolmogorov o Chebychev, entre otros.

5. Técnicas de remuestreo

Es por tanto conveniente trabajar con grandes cantidades de datos. Sin embargo,
esto no es siempre posible, o puede resultar demasiado costoso. Además, cuando to-
mamos una muestra solo tenemos una estimación única del parámetro de población,
con poca idea de la variabilidad o incertidumbre en la estimación. Las técnicas de
remuestreo permiten mejorar la precisión de nuestras estimaciones a partir de las
muestras originales y sin necesidad de tomar otras. Esencialmente, consisten en to-
mar muestras de forma repetida del conjunto completo de muestras que tenemos [8].

A continuación detallamos la metodología bootstrap, cuya esencia es el principio
del plug-in, que sustituye la distribución de probabilidad de la población original,
que es desconocida, por la distribución empírica asociada a la muestra. En caso de
que la cantidad que depende de la distribución empírica no se pueda calcular, se
aplica una técnica de remuestreo.

5.1. Metodología bootstrap

Supongamos que tenemos una muestra de tamaño n. La metodología bootstrap
se basa en tomar, de esta muestra original, K muestras al azar con reemplazamiento.
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Figura 9: Esquema de la metodología bootstrap.

Con cada muestra se calcula el coeficiente estadístico buscado, y se espera que la
media de todos ellos sea similar al coeficiente de la distribución real que generó el
conjunto de entrenamiento original (véase la figura 9).

El término bootstrap deriva de la frase «to pull oneself up by one’s bootstrap»,
tomada del libro de 1781 Las Aventuras del Barón de Munchausen, de Rudolph
E. Raspe, en un momento en el que el barón se había caído en el fondo de un
profundo lago y se le ocurre escapar tirando de los cordones de sus propias botas. Se
trata de una técnica computacional intensiva, debido a la fuerza del método de Monte
Carlo, que es necesario salvo en raras ocasiones. Sin embargo, su implementación no
suele ser complicada y, gracias al desarrollo de los ordenadores en la actualidad, no
debe causar demasiados problemas computacionales. Esta técnica fue originalmente
presentada por el estadístico americano Bradley Efron en 1979 [11], y estudiada
y desarrollada en muchas formas por diversos autores, entre los que destacamos a
Peter Hall [16, 17, 18]. La metodología bootstrap permite resolver muchos problemas
estadísticos difícilmente tratables desde el punto de vista analítico. En particular, si
tenemos una muestra grande, se puede usar para mejorar los intervalos de confianza
de estadísticos de localización como la media muestral, la mediana o los percentiles
muestrales. También es la base de una de las técnicas más conocidas en machine
learning, el random forest, introducido por Leo Breiman en 2001 [5], asimismo autor
de los árboles de clasificación y regresión, entre otras técnicas.
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6. Algunas aplicaciones del método de Monte Carlo

6.1. Integración por el método de Monte Carlo

Supongamos que queremos calcular la integral definida∫ b

a

f(x) dx,

con f : [a, b] → R integrable en el intervalo (a, b) pero difícil de integrar de forma
analítica. Sea U∗ ∼ U(a, b); se puede ver que∫ b

a

f(x) dx = (b − a)E[f(U∗)] ≈ (b − a)
n

n∑
i=1

f(u∗
i ),

donde u∗
1, . . . , u∗

n son observaciones independientes de una uniforme en el interva-
lo (a, b).
Ejemplo 10. Es bien sabido que∫ 1

0

√
1 − x2 dx = π

4 .

Vamos a aplicar el método de Monte Carlo para obtener una aproximación a dicho
valor. En la figura 10 se pueden observar las distintas aproximaciones que se obtienen
al valor de la integral variando los valores de n entre 1 y 10 000.

Figura 10: Representación gráfica de las aproximaciones y el valor de π
4 (ejemplo 10).
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Aunque el método de Monte Carlo, frente a otros métodos numéricos, no es muy
eficiente para el cálculo de integrales en una variable, cobra importancia en el caso de
integrales múltiples. Supongamos que queremos integrar una función de M variables∫ 1

0
· · ·

∫ 1

0
f(x1, . . . , xM ) dx1 · · · dxM .

Utilizamos que, dadas U1, . . . , UM uniformes independientes en (0, 1) y dadas {u
(i)
j },

j ∈ {1, . . . , M}, i ∈ {1, . . . , n} observaciones de estas uniformes, se tiene∫ 1

0
· · ·

∫ 1

0
f(x1, . . . , xM ) dx1 · · · dxM = E[f(U1, . . . , UM )] ≈ 1

n

n∑
i=1

f(u(i)
1 , . . . , u

(i)
M ).

6.2. Aproximación de soluciones de ecuaciones diferenciales

Una ecuación diferencial de primer orden es una expresión como sigue:

dy

dx
= f(x, y(x)),

donde x ∈ [a, b] ⊂ R y f puede ser una función no lineal y «complicada». Añadiendo
a nuestra ecuación una condición inicial y(x0 = a) = y0 obtenemos un problema de
valor inicial. Asumiendo que f tiene ciertas propiedades (es continua en su dominio
y verifica la condición de Lipschitz para y) se puede demostrar que el problema de
valor inicial planteado tiene existencia y unicidad de solución. A este resultado se le
conoce como teorema de Picard-Lindelöf y debe su nombre al francés Charles Émile
Picard y al finlandés Ernst Leonard Lindelöf, quien generalizó la teoría de Picard tras
su muerte [26]. Nótese que, de forma general, un problema de valor inicial siempre
se puede convertir en una ecuación integral

y(x) = y(x0) +
∫ x

x0

f(τ, y(τ)) dτ.

Si a = x0 < x1 < · · · < xN = b es una discretización del intervalo [a, b], tenemos la
siguiente expresión:

y(x) = y(x0) +
∫ x

x0

f(τ, y(τ)) dτ = y(x0) +
N∑

i=1

∫ xi

xi−1

f(τ, y(τ)) dτ.

Vamos a restringir nuestra atención a ecuaciones diferenciales de primer orden, li-
neales, independientes de y; esto es, dy

dx = f(x) con f(x0) = y0. Usando la aplicación
vista en la anterior sección para aproximar integrales, obtenemos

y(x) = y(x0) +
N∑

i=1
(xi − xi−1)E[f(Ui)] ≈ y(x0) +

N∑
i=1

(
xi − xi−1

K

K∑
j=1

f(u(i)
j )

)
,
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donde Ui ∼ U(xi−1, xi) y u
(i)
j son observaciones independientes de Ui con i ∈

{1, . . . , N} y j ∈ {1, . . . , K}, siendo K el número de muestras que tomamos en
cada intervalo. Este método se puede convertir en un proceso iterativo pues a partir
de la anterior fórmula de aproximación se obtiene

y(xi) = y(xi−1) + xi − xi−1

K

K∑
j=1

f(u(i)
j ).

Una de las ventajas de este método es su sencilla implementación en lenguajes de
programación. Además, se obtiene una aproximación a la solución de una ecuación
diferencial usando solamente muestras de una uniforme y evaluándolas en f .

El mismo proceso puede adaptarse para aproximar soluciones en ecuaciones
diferenciales de primer orden más generales. Por ejemplo, si consideramos dy

dx =
f(x, y(x)) con condición inicial y(x0) = y0, si a = x0 < x1 < · · · < xN = b es una
discretización del intervalo [a, b], entonces

y(x) = y(x0) +
N∑

i=1
(xi − xi−1)E[f(Ui, y(Ui))]

≈ y(x0) +
N∑

i=1

(
xi − xi−1

K

K∑
j=1

f(u(i)
j , y(u(i)

j ))
)

,

y se puede obtener el proceso iterativo

y(xi) = yi−1 + xi − xi−1

K

K∑
j=1

f(u(i)
j , yi−1),

donde yl ≈ y(xl). Nótese que en la fórmula del proceso iterativo se está reemplazando
el valor y(u(i)

k ) por yi−1, esto se debe a cuestiones computacionales. En [40] se pueden
encontrar más detalles.
Ejemplo 11. Consideremos el siguiente problema de valor inicial:{

y′(x) = y(x) + x, x ∈ [0, 1],
y(0) = 1.

La solución exacta a este problema es y(x) = 2ex − x − 1. Podemos obtener una
aproximación a esa solución usando el método desarrollado, tomando la discretiza-
ción de [0, 1] dada por xi = i

10 con i = 0, . . . , 10 y K = 50. En la figura 11 pueden
verse tanto la representación de la solución analítica como la de su aproximación.

6.3. Reducción de varianza mediante variables antitéticas

Esta técnica fue introducida por Hammersley y Morton en 1956 [20]. Supongamos
que queremos aproximar E[X] con Var[X] = σ2. Sean Y ∼ Z ∼ X; dada una muestra
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Figura 11: Representación de la solución analítica de la ecuación diferencial y su
aproximación mediante el método de Monte Carlo (ejemplo 11).

aleatoria simple de tamaño n se tiene que

Var
[

Ȳ + Z̄

2

]
= 1

4
(
Var

[
Ȳ

]
+ Var

[
Z̄

]
+ 2 Cov[Ȳ , Z̄]

)
= σ2

2n
+ 1

2n
Cov[Y, Z]

= σ2

2n
(1 + Cov[Y, Z]).

Con este método se obtiene la misma varianza que si hubiéramos empleado 2n mues-
tras de la variable original, pero con una reducción de −100(1 + ρ(Y, Z)) %. Nótese
que, para variables uniformes, si tomamos Y ∼ U(0, 1) y Z = 1 − Y , entonces Z
también será uniforme en el intervalo (0, 1) y Cov(Y, Z) ≤ 0, por lo que el método
reduce la varianza original.
Ejemplo 12. Supongamos que queremos aproximar∫ 1

0
f(x) dx.

Podemos emplear el método de las variables antitéticas,∫ 1

0
f(x) dx = E

[
f(U) + f(1 − U)

2

]
≈ 1

2n

n∑
i=1

(f(ui) + f(1 − ui)),

donde ui, i ∈ {1, . . . , n} son observaciones de una uniforme U ∼ U(0, 1). Este
método, además, solo necesita de la generación de n observaciones.
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