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Una breve introduccién al método de Monte Carlo

por

Elena Castilla y Pedro J. Chocano

RESUMEN. Hacemos un repaso al origen y evolucién del método de Monte
Carlo, explicando alguna de las técnicas mas importantes para la generacién de
nimeros y variables aleatorias. También repasamos algunos tests para compro-
bar si nuestros datos son aleatorios o bien provienen de una distribucién dada.
Por dltimo, comentamos algunas aplicaciones basicas del método de Monte
Carlo, como la metodologia bootstrap o la aproximacién de integrales defini-
das y soluciones de ecuaciones diferenciales.

El método de Monte Carlo, también conocido como simulaciéon de Monte Carlo o
simplemente como simulacién estocéstica [34, 35], fue definido por Halton (1970, [19])
como «un método para calcular un parametro de una hipotética distribucién, usando
una secuencia de nimeros aleatorios para construir una muestra de esta poblacion y,
a partir de ella, calcular su estimacién estadistica». Aunque puede variar, el método
de Monte Carlo suele tener la siguiente estructura:

i. Definir un espacio muestral de posibles datos o inputs.

ii. Generar datos en ese domino mediante una distribucién de probabilidad de-
terminada.

iii. Realizar un célculo deterministico a partir de esos datos generados.
iv. Aplicar estos calculos al resultado final.

Un ejemplo clésico de divulgacién del método de Monte Carlo es el de la estimacion
de la superficie de un lago. Supongamos que tenemos un lago cuya superficie des-
conocemos, pero este lago estd dentro de un terreno cuya &drea si es conocida, por
ejemplo, un cuadrado o rectangulo. Se dispone de una méaquina que dispara al azar
n bolas de goma en esta area (ver la figura 1).

Tras hacer una tanda de disparos, contamos el niimero de bolas que han caido al
lago, k (que también se puede contar como n — m, donde m es el nimero de bolas
que han caido fuera del lago). Entonces, se puede establecer la siguiente relacion:

area(lago)
4rea(terreno)

drea(lago) &~ — x 4rea(terreno).

Il 3|
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Figura 1: Estimacion de la superficie de un lago.

Este mismo método puede utilizarse para estimar el valor de 7. Si tomamos un
cuadrado de perfmetro 41 su circunferencia inscrita tendrd radio [/2. Si generamos n
puntos aleatorios en el cuadrado (ver la figura 2), se tiene la siguiente aproximacion:

drea(circulo)  w(1/2)> 7w k

drea(cuadrado) 12 4 n’

donde k es el nimero de puntos que caen dentro de la circunferencia. Asi, una
estimacién de m puede realizarse mediante

4k
T —.

n

Naturalmente, la estimacion mejorarda cuanto mayor sea la cantidad de nimeros

Figura 2: Estimacion de 7.

generados, y dependera de que estos se generen de manera totalmente aleatoria y
uniformemente en el cuadrado. Es por tanto necesario desarrollar una técnica ade-
cuada para la generacion de estos nimeros. A lo largo de este articulo hacemos un
repaso al origen y evolucién del método de Monte Carlo, explicando alguna de las
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técnicas mas importantes para la generacién de nimeros y variables aleatorias. Tam-
bién proporcionaremos tests para la comprobacién de aleatoriedad o de que nuestros
datos provienen de una distribucién dada e introduciremos el bootstrap como ma-
yor representante de las llamadas técnicas de remuestreo. Por tltimo, comentaremos
algunas aplicaciones basicas del método de Monte Carlo, como la aproximacion de
integrales definidas o de soluciones de ecuaciones diferenciales.

1. ORIGENES DEL METODO DE MONTE CARLO

En 1777, Georges Louis Leclerc, conde de Buffon, resolvié un problema planteado
por él mismo anos antes y que ahora conocemos como el problema de la aguja de
Buffon. Esta solucién fue publicada en el Suplemento IV de la enciclopedia Histoire
Naturelle [7] escrita entre otros por el propio Buffon durante 50 anos, y en la que se
intent6 plasmar todo el saber de la época concerniente a la ciencia (figura 3). Afios
después, Laplace [23] corrigié un error en la solucién, por lo que algunos autores
también se refieren a este problema como el de la aguja de Buffon-Laplace.

El problema consiste en lanzar una aguja de longitud [ sobre un papel en el
que se han trazado rectas paralelas distanciadas entre si una cantidad ¢, con [ < t.
Buffon se preguntaba por la probabilidad de que la aguja cruzara alguna de las
lineas. Se puede demostrar que dicha probabilidad es % Por tanto, podemos hacer
una estimacién del nimero 7 repitiendo el experimento un nimero suficientemente
alto de veces. Asi, si n es el nimero total de intentos y k el nimero de veces que la
aguja ha cruzado alguna linea, tenemos

_ 2nl
TR
En 1901 el matemadtico italiano Lazzarine [24] realizé el experimento de Buffon uti-
lizando una aguja de I = 2.5cm y lineas de t = 3cm de separacién. De 3408 agujas,
1808 cruzaron la linea, dando una aproximacién de
2x 3408 x 2.5 355
™R 3 % 1808 =133 3.1415929. ..
Dado que m = 3.1415926. .., la aproximacién de Lazzarine dio una precision de
iseis decimales! Una interesante discusién sobre este experimento puede encontrarse
en [2]. Hoy en dia hay muchas aplicaciones en internet que permiten simular el
experimento de la aguja de Buffon de una manera bastante ilustrativa, por ejemplo,
https://mste.illinois.edu/activity/buffon/.

Muchos autores consideran el experimento de la aguja de Buffon como el origen
del método de Monte Carlo. Sin embargo, esta terminologia no fue usada hasta
200 anos después por el matematico Nicholas Metropolis, a mediados de siglo XX.
Segun el propio Metropolis, dos fueron los motivos del desarrollo de estas técnicas:
(1) la aparicién de las primeras computadoras, como por ejemplo la ENTAC [15],
y (2) el trabajo del propio Metropolis con Stanislaw Ulam y John Von Neumann
para resolver el problema de difusién de neutrones en material fisionable usando el
muestreo estadistico, ya que este problema era analiticamente intratable.
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D'ARITHMETIQUE MORALE. 1ot

et fimplement divifé par des joints paraliéles, on jerte
en Il une bagueue, & que I'un des joueurs parie que
1a bagueute ne croifira aucune des paralicles du parquet,
& que Fautre au conmaire parie que la baguette croifera
quelques-unes de ces paraliéles; on demande le fort de
ces deux joucurs. On peut jouer ce jeu fr un damicr avee
wme aiguille & coudre o une dpingle fans tére.
| Pour le wouver, je tire d'abord entre les deux joints
panalléles A B & C D du parquet, deux aures lignes
9

e B

R =

g VI

i D
paralléles b & ¢ 4, éloignées des premiéres de la moitié
de la longueur de la baguctie £ F, & je vois évidemment
que tnt que le milieu de la baguette fera entre ces deux
fecondes paralléles, jamais el nc pourra croife les pre-
mﬂi: dans quelque fiwation £ F, ¢ f, quelle puifle fe
wouver; & comme tour ce qui peut arriver au-deffus
dea lwve de méme au-deffous de ¢ d, il ne sagic
gwie désesminer I'un oul'autfe; pour cela je remarque
que toutes les fiwations de fa baguente peuvent étre : |

Figura 3: El problema de la aguja de Buffon.

Cuentan que Ulam, mientras hacfa solitarios con una baraja de cartas, se planted
cémo calcular la probabilidad de ganar una partida. Como los célculos combinatorios
podian resultar demasiado tediosos, a Ulam se le ocurri6 si, en lugar de hacer estos
calculos, podria emular una gran cantidad de partidas y contar los casos favorables.
Ulam pensé rapidamente en cémo poder aplicar su idea a cuestiones fisicas como el
problema de la difusién de neutrones, entre otros. Poco después, en 1946, le comenta
sus ideas a Metropolis y Von Neumann y comienzan a realizar cdlculos. Esta técnica
fue aplicada en el conocido proyecto Manhattan para la resolucién de muchos de los
problemas complejos que surgieron durante la creaciéon de la bomba atémica. Fue en
1949 cuando Metropolis y Ulam usaron por primera vez el término «Monte Carlo»
en un texto cientifico [30].

2.  GENERACION DE NUMEROS (PSEUDO)ALEATORIOS

La primera tabla conocida de nimeros aleatorios fue publicada en 1927 por Leo-
nard Henry Caleb Tippet [38], un estudiante de Karl Pearson. La tabla de nitimeros
aleatorios de Tippet consiste en 41600 digitos agrupados en 10400 ntimeros de 4
cifras, y fue presentada en un total de 26 paginas, cada una de ellas con 32 columnas
y 50 filas. Estos ntimeros fueron cogidos de forma «aleatoria» del registro del censo,
provocando la primera lista de nimeros aleatorios con periodo 10000. Otra tabla
muy conocida de nimeros aleatorios fue dada por Fisher y Yates en 1938. Esta tabla
constaba de 10000 cifras tomadas «aleatoriamente» de las tablas de logaritmos [13].

Una de las tablas méas usadas fue la generada por la Corporacién RAND, una
organizacién que ofrecia servicios de investigacién a las Fuerzas Armadas de Estados
Unidos, en el ano 1955, con el objetivo de ser usada en aquellos experimentos en los
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que se aplicaba el incipiente método de Monte Carlo. La tabla RAND, también
conocida como la tabla de un millén de digitos por su tamafio (ver figura 4), fue
presentada en 400 paginas, cada una conteniendo 50 lineas de 50 digitos, agrupados
de cinco en cinco (oscilando entre el 00000 y el 99999), asi como en forma de tarjetas
perforadas. Los ntiimeros fueron generados de manera fisica con una rueda de ruleta
conectada a una computadora, y luego fueron cuidadosamente filtrados antes de ser
pasados a la tabla [6].

Figura 4: Un millén de digitos aleatorios.

En los anios posteriores, la aparicion de ordenadores de alta velocidad promovid
el desarrollo de métodos de generacion de nimeros pseudoaleatorios, evitando asi
tener que leerlos de tablas de tamafios inabarcables. Una secuencia de ntimeros se
considera pseudoaleatoria si es aparentemente aleatoria, aunque se haya producido
bajo un proceso totalmente deterministico y reproducible. En concreto, se parte de
un ndimero original (semilla) a partir del cual, y por un método deterministico, se
produce una secuencia de nimeros aleatorios que siguen una distribucién uniforme
en el intervalo [0, 1].

2.1. METODO DE VON NEUMANN

Uno de los primeros métodos para generar nimeros pseudoaleatorios es el mé-
todo de los cuadrados medios propuesto por Von Neumann en 1946 y publicado en
1951 [31]. Como Von Neumann comenta en su articulo, si cogiéramos las diez ci-
fras centrales de un nimero de diez cifras elevado al cuadrado e iteraramos, se irian
gradualmente mezclando los digitos produciendo cierta pseudoaleatoriedad. De ma-
nera general, el método de los cuadrados medios de Von Neumann consiste en los
siguientes pasos:

i. Elegir un nimero par de n cifras, zo (semilla).
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ii. Elevar zg al cuadrado, x3.

iti. Tomar los n digitos centrales de x2, obteniendo ;.

iv. Volver al paso ii y repetir el proceso.

v. Para producir niimeros en el intervalo [0, 1], dividir la secuencia entre 10™:
Zq

BT

Ug

Véase un esquema visual del método en la figura 5. La secuencia obtenida a
partir de un cierto punto en adelante serd nuestra secuencia de nimeros pseudo-
aleatorios. Este método tiene sus desventajas; por ejemplo, los nimeros generados
pueden repetirse ciclicamente después de un periodo (la longitud del ciclo) corto.

3708 <=
\II/

13749264
\II/

7492 —

Figura 5: Método de Von Neumann.

2.2. METODOS CONGRUENCIALES

Los generadores congruenciales lineales fueron introducidos por Lehmer en 1951
[25]. Decimos que dos enteros a y b son congruentes (médulo m) si a — b es multiplo
de m. Un método congruencial consiste en:

i. Elegir un ntimero z inicial (semilla).

ii. Para ¢ > 1 obtener de manera recursiva
T; = ax;—1 +b moédulo m.

ii. Para producir nimeros en el intervalo [0, 1], dividir la secuencia entre m:

T
Uy = —.
m
Si b= 0, se dice que es un generador multiplicativo y, en caso contrario, se dice
que es mixto. La pseudoaleatoriedad de los métodos congruenciales se refleja en la si-
guiente proposicién, donde se observa de forma clara tanto el algoritmo determinista
que es empleado como que condiciones iniciales iguales producen mismos resultados.

PROPOSICION 1. Si se aplica un método congruencial, se verifica

, i1
T; = a'xg + bL médulo m.
a—1
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Un gran inconveniente de este método es que los valores u; solo pueden tomar
valores i/m, i = 0,...,m. Ademads, es inevitable que se produzcan ciclos, ya que el
periodo nunca puede exceder al médulo. Asi, se tiene que tomar un valor suficiente-
mente grande de m para que el conjunto de posibles valores de la sucesién se asemeje
a la de una variable continua uniforme en el intervalo [0,1] y que el ciclo no sea de-
masiado corto. En concreto, nos podemos preguntar cémo elegir los pardmetros para
que el ciclo sea completo, es decir, para que se atraviesen todos los posibles estados
(ntimeros) antes de volver a la semilla original. Hull y Dobell establecieron en 1962
[21] el siguiente teorema:

TEOREMA 2. Un generador congruencial tiene periodo completo si y solo si se cum-
plen las siguientes condiciones:

1. m y b son primos entre si.
2. Si q es un nidmero primo que divide a m, entonces q divide a (a — 1).
3. Si 4 divide a m, entonces 4 divide a (a —1).

Notese que un generador de ciclo completo lo es con independencia de la semilla
o escogida. Sin embargo, los generadores de ciclo no completo tendran diferente
longitud dependiendo de la semilla escogida.

En la década de los 70, fue muy difundido el generador multiplicativo RANDU,
implementado en IBM, con a = 2'6 4+ 3, b = 0, m = 23! y 2y un ntimero impar. Sin
embargo, este generador es considerado como uno de los peores generadores de ni-
meros aleatorios creados [14]. Como Marsaglia destacé ya en 1968 [28], un problema
asociado con los métodos congruenciales es su naturaleza «reticular». La secuencia
de valores generados se sitiia en un numero normalmente bajo de hiperplanos pa-
ralelos, que dependerd de la eleccién de los pardmetros (véase la figura 6, donde el
eje de abscisas representa el nimero de iteraciones y el eje de ordenadas el valor
asociado a la iteracién). En particular, para el generador RANDU, se puede demos-
trar que el nimero de hiperplanos es 15, en un cubo de dimensién 3. Este generador
fue sisteméaticamente desapareciendo, aunque algunos compiladores de FORTRAN
lo mantuvieron hasta finales del siglo XX.

2.3. COMO COMPROBAR LA ALEATORIEDAD (TEST DE WALD-WOLFOWITZ)

Este test, también conocido como test de las rachas, debe su nombre a los estadis-
ticos Abraham Wald y Jacob Wolfowitz ([39], 1940) que lo presentaron originalmente
como un test no paramétrico para comprobar si dos muestras vienen de la misma
poblacién. En su versiéon méas conocida, es un test para comprobar la aleatoriedad
de una secuencia de datos. Para aplicarlo, necesitamos los siguientes supuestos:

1. Los datos deben considerarse en el orden de ocurrencia.
2. Los datos deben reducirse a dos posibles valores.
Definimos una «racha» como una serie de valores consecutivos iguales. Por ejemplo,

en la secuencia de 20 elementos

tH+——+ -ttt -+ ———
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=1 Xy4,1= (5%, +3)mod 16 Xg =5 Xp.1-(37%,+1) mod 64

. . . I A T UL
50
0} . .
. . . f - b, .4

20 .:.

wg, et

Figura 6: Generadores congruenciales. Imdgenes generadas con [4].

tendremos 12 rachas, 6 correspondientes al simbolo «+» y 6 correspondientes al
simbolo «—». Se puede demostrar que, bajo la hipétesis nula de aleatoriedad de la
muestra, el niimero total de rachas se comporta asintéticamente como una normal

de media y y varianza o2, con

2 -1 -2
= n1M2 +1, o2 = (p ) (1 )7
n1 + no ny+ng—1

donde ny y no son el nimero de elementos asociados a cada una de las dos categorias.

Asi, dada una secuencia de valores en el orden original y categorizada en dos

clases, se calcula el estadistico
z=N_#

g

donde N es el nimero total de rachas observado. Dado un nivel de significacién «, la
hipétesis de aleatoriedad se rechaza si |Z| > Z, /5, donde Z, /5 es el cuantil 1 — /2
de la distribuciéon normal estandar.

EJEMPLO 3. En una clase se anota el género de 20 alumnos a la hora de entregar
el examen. Se desea conocer con un nivel de significancia del 5% si la posicién de
alumnos y alumnas es aleatoria. En la muestra aparecen 10 alumnos y 10 alumnas,
y el numero de rachas es igual a 12. La colocacion de los alumnos es como sigue:

0TT T TP T 9T 9P

En este caso, |Z| = 0.46 < Zoos = 1.96, por lo que no rechazamos la hipdtesis de
aleatoriedad. En otra clase se ha obtenido la siguiente sucesion:

PRPPRPPRPPO T T TRRRLY

En este caso tenemos 5 alumnos y 15 alumnas, N = 3 y |Z| = 3.43 > 1.96, por lo
que rechazamos la hipétesis de aleatoriedad.
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El test de Wald-Wolfowitz puede utilizarse para comprobar la aleatoriedad de
una secuencia de nimeros aleatorios tomando los nimeros en el mismo orden de la
secuencia y marcando con «+» si el nlumero es mayor que la media (o mediana o
cualquier otro estadistico a considerar) y con «—» si es menor que el valor elegido.

EJEMPLO 4. Dada la sucesion
0.50 0.51 0.89 0.98 0.74 0.91 0.51 0.62 0.3 0.24
0.19 0.72 0.83 0.08 0.54 0.04 0.01 036 0.16 0.28

0.18 0.01 0.95 0.69 0.22 049 025 0.32 082 0.60
0.31 042 073 0.04 083 045 015 0.57 0.63 0.44

la sucesidn de signos asociados (considerando la media como punto critico) es

++++++++---++-+-—-——
-—-t+-+--++-—-+-4+-—4++-
Entonces N = 18 y ny = ny = 20. En este caso |Z| = 0.96 < 1.96, por lo que a un
nivel de significacion del 5% no rechazamos la hipdtesis de aleatoriedad.
En la siguiente seccién veremos algunas técnicas para la generacion de varia-
bles aleatorias (continuas) a partir de nimeros aleatorios que, como hemos visto,

generalmente se considera que pertenecen a una variable aleatoria uniforme de in-
tervalo [0, 1].

3. GENERACION DE VARIABLES ALEATORIAS CONTINUAS

3.1. METODO DE LA TRANSFORMADA INVERSA

El método de la transformada inversa, probablemente el método més «sencillo»
para la generaciéon de variables aleatorias, se basa en el siguiente resultado:

PROPOSICION 5. Supongamos una variable aleatoria X que tiene funcién de dis-
tribucion continua Fx(x) estrictamente creciente siempre que 0 < Fx(z) < 1. Sea
U una variable aleatoria que sigue una distribucion uniforme en el intervalo (0, 1),
U ~ U(0,1). Entonces, la variable aleatoria Fy'(U) tiene como funcién de distri-
bucion a Fx.

El método de la transformada inversa para generar valores de una variable alea-
toria X descrita por una funcién de distribucién F'x(x) consiste en los siguientes
pasos:

i. Se genera un nimero aleatorio u de una variable aleatoria U(0,1).
ii. Se calcula x = Fy'(u).
EJEMPLO 6. Vamos a generar valores de una variable aleatoria exponencial mediante

el método de la transformada inversa. Si X ~ Exp(A), Fx(x) = 1 — exp(—Az). Si
hacemos u = Fx(x), entonces

u=1—e,

_log(1 —u)
—
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Nétese que U ~ U(0,1) implica que 1 — U ~ U(0,1), por lo que el método de
la transformada inversa se simplificaria en: dado un nimero aleatorio u de una
variable aleatoria U(0,1), calcular

_ log(u
A

~—

xTr =

EJEMPLO 7. Vamos a generar valores de una variable aleatoria Gamma mediante
el método de la transformada inversa. En este caso, si X ~ Gamma(n,\) y

Fx(x) = /Oz (nA_nl), exp(—Ay)y" " dy,

no es posible aplicar el método de la transformada inversa de forma directa. Sin em-
bargo, podemos utilizar la siguiente propiedad: Sean X1, ..., X, variables aleatorias
independientes tales que X; ~ Exp(\) para todo i; entonces

Z X; ~ Gamma(n, A).

i=1

Por tanto, se puede usar el siguiente algoritmo:

i. Generar uy,...,u, independientes de una variable aleatoria U(0,1).
ii. Caleular v = —Y""_, %.

Aunque este método es aplicable a cualquier funcién continua, a veces no es
posible encontrar una funcién explicita para Fy 1(u) 0, en caso de poderse, puede
suceder que su evaluacién requiera demasiado tiempo de computacion.

3.2. METODO DE RECHAZO

Este método fue propuesto por Von Neumann (ver la figura 7) en su ya citado
articulo Various techniques used in connection with random digits (1951, [31]). Su-
pongamos que queremos generar valores de una variable aleatoria X con funcién de
densidad f(z). Supongamos también que sabemos muestrear una variable aleatoria
Y con funcién de densidad g(z) tal que sup,, f(x)/g9(x) < ¢, con ¢ > 0. El método del
rechazo (también llamado de aceptacidn y rechazo) consiste en los siguientes pasos:

i. Generar u de una variable aleatoria U(0,1) e y de la variable aleatoria Y.

ii. Siu< Cj;(é)), hacer z = .

iii. En caso contrario, volver al paso i.

EJEMPLO 8. Supongamos que queremos generar valores de la variable aleatoria X ~
Beta(a, ), cuya funcién de densidad es

f(z) = B(a, a1 —a)" Y,
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Figura 7: John Von Neumann (1903-1957), uno de los padres de la simulacién
estadistica.

donde B(a, 8) = fol 221 — z)~ 1 dx. Supongamos el caso particular o = 3. Esto
es: f(z) = B(a,a)(z(1 — x))*~ L. Cojamos g de una uniforme U(0,1). Se puede
demostrar facilmente que

f(x)/9(x) = f(x) < Bla,a)(1/4)%.
Ast, aplicando el método del rechazo:
i. Generar uy y ug independientes de una variable aleatoria U(0,1).
it ST ug < 4%(ur(1 — u1))®, hacer x = uy.
1i5. En caso contrario, volver al paso i.
Nétese que, en este caso, no es necesario calcular B(a, ).

El método de aceptacion y rechazo es un método alternativo al de inversién
cuando se dispone de una funcién de densidad sencilla de acotar.

3.3. COMO COMPROBAR QUE LOS DATOS PERTENECEN A UNA DISTRIBUCION
3.3.1. TEST DE LA x?> DE PEARSON

Este test fue introducido por Karl Pearson en 1900 ([32], véase la figura 8). En
este articulo Pearson critica las practicas habituales en esa época, en las que se tendia
a asumir que los datos seguian una distribuciéon normal. En particular, cita el trabajo
de George Biddell Airy en su libro Theory of Errors of Observation [1]. La prueba de
la chi-cuadrado permite contrastar si nuestros datos provienen de una distribucién
en concreto, digamos Fy(z), que consideramos aqui totalmente especificada.

Supongamos que tenemos n observaciones en una muestra aleatoria clasificados
en k > 1 clases disjuntas. Para cada j € {1,...,k}, denotemos como O; al nimero
de observaciones de cada clase y como e; al nimero de observaciones esperadas
(suponiendo que lavariable aleatoria X sigue la distribucién Fy), calculada como
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—

X. Oa the Criterion that a given System of Deviations |

from the Probable in the Case of a Correlated System of
Variables is such that it can be reasonably supposed to have -
arisen from Random Sampling. By Kary Pearsox, F.R.S.,
University College, London*.
T HE object of this paper is to investigate a criterion of the
probability on any theory of an observed system of errors,
and to apply it to the determination of goodness of fit n the
case of frequency curves,

(1) Preliminary Proposition. Let 2y, xy .. . @, be a system
of deviations from the means of n variables with standard
deviations o, @;...d, and with correlations rys, ri rs...

[ 157 ]

—

T“i"‘h’;n the frequency surface is given by
—i{8 (% ;”:)4-23. (e %) }

7,
Z=Zp B iy w1
where R is the determinant
| ! s Pt
‘5‘ | 7qy 1 T2 Pon

| o e e

1
and Rpp, Rpe the minors obtained by striking ont the pth row
and ptPhF’column, and the pth row and gth ccgnlpnm. 8 is the
sum for every value of p, and 8, for every pair of values of p
and q.
Now let

Rep 2%\ %ﬂ)
,@:S,(T;;,)HS, ) - @

: : %% = constant, is the equation to a generalized “ ellip-

b g\el?’ ?&l over the surface ;f which the frequency of the
‘ system of errors or deviations @, @; . . . Za I8 constant. The

values which y must be given to cover the }wlz?le of space

are from 0 to . Now snl;)posa the “ ellipsoid  referred to

its principal axes, and then by squeezing reduced to a sphere,

X, Xy . .+ X being now the coordinates ; then the ehances

of a system of errors with as great or greater frequency than

* Communicated by the Author.

Figura 8: Pearson introduce el test de la x?.

ej = npj, con p; la probabilidad de caer en la j-ésima clase. El estadistico de
Pearson viene dado por

V2= Z (O; _‘ej)z7

=1
que sabemos que asintéticamente se comporta como una x? con k — 1 grados de
libertad. Asi, bajo un nivel de significacién o, si x> > xi_; , se rechaza la hipétesis
de que nuestra muestra provenga de Fp(x).

Mann y Wald presentaron en 1942 [27] una técnica para decidir el ntimero 6ptimo
de intervalos para aplicar el test de la x2. La idea era elegir los intervalos de tal
manera que la probabilidad de rechazar Fy(z) como verdadera distribucién, siendo
Fi(z) la distribucién verdadera, nunca fuera menor que 0.5.
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3.3.2. EL TEST DE KOLMOGOROV-SMIRNOV

Supongamos que tenemos n observaciones independientes e idénticamente dis-
tribuidas 1, ..., z,. El estadistico de Kolmogorov-Smirnov (en ocasiones abreviado
como K-S) para una funcién de distribucién dada viene dado por

D =sup |F,(z) — Fyo(z)|,

donde F,(x) es la funcién de distribucién empirica, definida como
1 n
Fn(l‘) = H Z I(—oo,w] (SE,L'),
i=1

donde I(_ 4 (7;) es la funcién indicatriz, igual a 1 si #; <z y a 0 en caso contrario.
Dado un nivel de significaciéon «, la hipotesis de que los datos provengan de la
distribucién Fy(x) se rechaza si

D Z Dn,ou

siendo D,, la distribucién de Kolgomorov-Smirnov.

Este test fue propuesto independientemente por los matemadticos rusos Andréi
Kolgomorov [22] y Nikolai Smirnov [36] en 1933 y 1939, respectivamente. Mientras
que la distribucién asintotica del estadistico D fue derivada en ambos trabajos, una
primera tabla con los valores de la correspondiente distribucién fue presentada por
Smirnov en [37]. Destacamos los trabajos de Feller [12] y Doob [10], que simplifi-
caron y unificaron la teoria de ambos. Uno de los primeros autores en hacer una
comparacion entre el test de la x? de Pearson y el de Kolgomorov-Smirnov fue F. J.
Massey en 1951 [29], articulo que ya presentaba un pequeiio estudio de Monte Carlo.
Algunas de las conclusiones obtenidas por Massey fueron las siguientes:

1. En general no podemos saber la potencia del test de la x? (Mann y Wald [27],
por ejemplo, consideraban solo el caso 0.5), mientras que es sencillo calcular
una cota inferior de la potencia de D.

2. A diferencia del test de Kolgomorov-Smirnov, el test de la x? depende de
agrupar las observaciones, con lo que podemos perder informacion.

3. El test de Kolgomorv-Smirnov no se puede aplicar directamente a distribucio-
nes discretas, mientras que el de la x? si.

En el caso en que la hipétesis nula corresponda a toda una familia paramétrica en
la que el pardametro no esté especificado y hay que estimarlo, el contraste de bondad
de ajuste de la x2 podria llevarse a cabo mediante la modificacién de los grados de
libertad de este. Por otra parte, es posible llevar a cabo el contraste de Kolmogorov-
Smirnov para una hipétesis nula que corresponda a una familia paramétrica en la
que el pardmetro no esté especificado y haya que estimarlo mediante técnicas de
computacién intensiva como el bootstrap, el cual desarrollamos mas adelante.
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4. LA LEY DE LOS GRANDES NUMEROS

La inferencia estadistica es el conjunto de métodos que permiten inducir, a través
de una muestra estadistica, el comportamiento de una determinada poblacién. A ma-
yor cantidad de datos, mayor serd la precision de nuestras técnicas. Esta afirmacién,
que hasta ahora hemos asumido como «natural» o «intuitiva», puede justificarse de
manera tedrica gracias al siguiente resultado:

TEOREMA 9 (Ley fuerte de los grandes niimeros). Sea F una distribucién de proba-
bilidad en R?, A un conjunto medible en R? y F), la distribucién empirica asociada
a una muestra de tamano n de F'. Entonces,

F,(4) =5 F(A),

n— oo

donde c.s. denota la convergencia casi sequra.

El matematico italiano Gerolamo Cardano (1501-1576) en su manual para juegos
de azar Liber de Ludo Aleae editado en 1663 [9] (aunque escrito mucho antes),
ya destacd, sin pruebas, que «cuantas mas partidas se celebran de un juego de
azar mejor predice la probabilidad matematica el resultado». Sin embargo, tuvieron
que pasar cien anos hasta que Jacob Bernoulli (1654-1705) en el Ars Conjectandsi
(1713, [3]) publicara la primera formulacién de la ley de los grandes niimeros para
una variable aleatoria binaria. Este resultado, al que Bernoulli se refirié como su
«teorema dorado» y al que otros muchos conocen como «teorema de Bernoulli»,
fue denominado por primera vez como «ley de los grandes nimeros» por Poisson
en 1837 [33]. Hay versiones variadas de la ley de los grandes ntimeros probadas por
matematicos como Khinchin, Kolmogorov o Chebychev, entre otros.

5. TECNICAS DE REMUESTREO

Es por tanto conveniente trabajar con grandes cantidades de datos. Sin embargo,
esto no es siempre posible, o puede resultar demasiado costoso. Ademés, cuando to-
mamos una muestra solo tenemos una estimacién tinica del parametro de poblacién,
con poca idea de la variabilidad o incertidumbre en la estimacion. Las técnicas de
remuestreo permiten mejorar la precision de nuestras estimaciones a partir de las
muestras originales y sin necesidad de tomar otras. Esencialmente, consisten en to-
mar muestras de forma repetida del conjunto completo de muestras que tenemos [8].

A continuacién detallamos la metodologia bootstrap, cuya esencia es el principio
del plug-in, que sustituye la distribuciéon de probabilidad de la poblacién original,
que es desconocida, por la distribuciéon empirica asociada a la muestra. En caso de
que la cantidad que depende de la distribucién empirica no se pueda calcular, se
aplica una técnica de remuestreo.

5.1. METODOLOGIA BOOTSTRAP

Supongamos que tenemos una muestra de tamano n. La metodologia bootstrap
se basa en tomar, de esta muestra original, K muestras al azar con reemplazamiento.
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Muestra original ’ K muestras Bootstrap ‘

— [cxntor |

2 @& O
@ O O
OO0 @&

== | Estadistico 2

= | Estadistico K

Estadistico Original ’ Estadistico Mejorado ‘

Figura 9: Esquema de la metodologia bootstrap.

Con cada muestra se calcula el coeficiente estadistico buscado, y se espera que la
media de todos ellos sea similar al coeficiente de la distribucién real que gener6 el
conjunto de entrenamiento original (véase la figura 9).

El término bootstrap deriva de la frase «to pull oneself up by one’s bootstrapy,
tomada del libro de 1781 Las Aventuras del Barén de Munchausen, de Rudolph
E. Raspe, en un momento en el que el barén se habia caido en el fondo de un
profundo lago y se le ocurre escapar tirando de los cordones de sus propias botas. Se
trata de una técnica computacional intensiva, debido a la fuerza del método de Monte
Carlo, que es necesario salvo en raras ocasiones. Sin embargo, su implementaciéon no
suele ser complicada y, gracias al desarrollo de los ordenadores en la actualidad, no
debe causar demasiados problemas computacionales. Esta técnica fue originalmente
presentada por el estadistico americano Bradley Efron en 1979 [11], y estudiada
y desarrollada en muchas formas por diversos autores, entre los que destacamos a
Peter Hall [16, 17, 18]. La metodologia bootstrap permite resolver muchos problemas
estadisticos dificilmente tratables desde el punto de vista analitico. En particular, si
tenemos una muestra grande, se puede usar para mejorar los intervalos de confianza
de estadisticos de localizacion como la media muestral, la mediana o los percentiles
muestrales. También es la base de una de las técnicas mas conocidas en machine
learning, el random forest, introducido por Leo Breiman en 2001 [5], asimismo autor
de los arboles de clasificacién y regresion, entre otras técnicas.



102 UNA BREVE INTRODUCCION AL METODO DE MONTE CARLO

6. ALGUNAS APLICACIONES DEL METODO DE MONTE CARLO

6.1. INTEGRACION POR EL METODO DE MONTE CARLO

Supongamos que queremos calcular la integral definida

/a ' fa)

con f : [a,b] — R integrable en el intervalo (a,b) pero dificil de integrar de forma
analitica. Sea U* ~ Ul(a,b); se puede ver que

n

b * (b - CL) - *
[ @)de= - aErw) ~ S f),
a i=1

donde uj,...,u} son observaciones independientes de una uniforme en el interva-
lo (a,b).

EjemprLo 10. Es bien sabido que
1
/ V1—22dx = T
0 4

Vamos a aplicar el método de Monte Carlo para obtener una aproximacion a dicho
valor. En la figura 10 se pueden observar las distintas aprozimaciones que se obtienen
al valor de la integral variando los valores de n entre 1 y 10000.

0.85 T T

— Valor exacto

0.84 Valores aproximados |

Valor aproximado
o o o
[e0] [ee] [e0]
- n w

o
©
T
L

0.79 1

0.78 : : : :
0 2000 4000 6000 8000 10000

Valor de n

™

Figura 10: Representacién grafica de las aproximaciones y el valor de 7 (ejemplo 10).
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Aunque el método de Monte Carlo, frente a otros métodos numéricos, no es muy
eficiente para el cdlculo de integrales en una variable, cobra importancia en el caso de
integrales multiples. Supongamos que queremos integrar una funciéon de M variables

1 1
/ / f(x17~-~7xM)dl'1"'d$N[.
0 0

Utilizamos que, dadas Uy, . . ., Ups uniformes independientes en (0, 1) y dadas {u?}7
je{l,...,.M} i€ {1,...,n} observaciones de estas uniformes, se tiene

n

1 1 _ .
/0.“/0 f(ml,...,xM)dx1-~-da?M:E[f(Ul,...,UM)]%%Zf(ugl),...,ug\z)).

i=1

6.2. APROXIMACION DE SOLUCIONES DE ECUACIONES DIFERENCIALES

Una ecuacién diferencial de primer orden es una expresiéon como sigue:

D= Sy,

donde z € [a,b] C Ry f puede ser una funcién no lineal y «complicaday. Afiadiendo
a nuestra ecuacién una condicién inicial y(xg = a) = yo obtenemos un problema de
valor inicial. Asumiendo que f tiene ciertas propiedades (es continua en su dominio
y verifica la condicién de Lipschitz para y) se puede demostrar que el problema de
valor inicial planteado tiene existencia y unicidad de solucién. A este resultado se le
conoce como teorema de Picard-Lindelof y debe su nombre al francés Charles Emile
Picard y al finlandés Ernst Leonard Lindel6f, quien generalizé la teoria de Picard tras
su muerte [26]. Nétese que, de forma general, un problema de valor inicial siempre
se puede convertir en una ecuacién integral

y(x) = y(xo) + /x f(ry(7))dr.

Sia=u1zp <z < <zy =Db es una discretizacién del intervalo [a,b], tenemos la
siguiente expresion:

v =yeo)+ [ frae) =y + > [ s

Vamos a restringir nuestra atenciéon a ecuaciones diferenciales de primer orden, li-

neales, independientes de y; esto es, % = f(z) con f(zo) = yo. Usando la aplicacién

vista en la anterior secciéon para aproximar integrales, obtenemos

K

y(@) = y(wo) + Y (xi — win) E[F(U0)] = ylao) + 3 (K Zf(ui-”)),

1
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donde U; ~ U(mi—1,2;) y uél) son observaciones independientes de U; con i €
{1,...,N} vy j € {1,...,K}, siendo K el ntimero de muestras que tomamos en
cada intervalo. Este método se puede convertir en un proceso iterativo pues a partir
de la anterior formula de aproximacién se obtiene

K
e =+ 25EL 0
j=1

Una de las ventajas de este método es su sencilla implementacién en lenguajes de
programacion. Ademas, se obtiene una aproximacién a la solucién de una ecuaciéon
diferencial usando solamente muestras de una uniforme y evaluandolas en f.

El mismo proceso puede adaptarse para aproximar soluciones en ecuaciones

diferenciales de primer orden méas generales. Por ejemplo, si consideramos Z—Z =
f(z,y(x)) con condicién inicial y(xg) = yo, sl a = 29 < 1 < --- < xy = b es una

discretizacion del intervalo [a, b], entonces

y(z) = y(zo —l—z i — xi—1) E[f (Ui, y(Ui))]

K
Ti— Ti_
%+z( 1szw@w,
j=1

y se puede obtener el proceso iterativo

xll
y(@i) = yig + 2L Zf u$ yic),

donde y; = y(x;). Nétese que en la férmula del proceso iterativo se estd reemplazando
el valor y(u,(;)) por y;_1, esto se debe a cuestiones computacionales. En [40] se pueden
encontrar mas detalles.

EJjemMpPLO 11. Consideremos el siguiente problema de valor inicial:

y' (@) =y(@)+=z, xel01]
y(0) = 1.

La solucidn ezxacta a este problema es y(x) = 2¢* — x — 1. Podemos obtener una
aprozimacion a esa solucién usando el método desarrollado, tomando la discretiza-
cion de [0,1] dada por x; = 15 coni=0,...,10 y K = 50. En la figura 11 pueden

verse tanto la representacion de la solucion analitica como la de su aproximacion.
6.3. REDUCCION DE VARIANZA MEDIANTE VARIABLES ANTITETICAS

Esta técnica fue introducida por Hammersley y Morton en 1956 [20]. Supongamos
que queremos aproximar E[X] con Var[X] = 02. Sean Y ~ Z ~ X; dada una muestra
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3.5 T
Exacta
Aproximads
3| 1
251 b
ot 1
1571 1

Figura 11: Representacién de la solucién analitica de la ecuacién diferencial y su
aproximacién mediante el método de Monte Carlo (ejemplo 11).

aleatoria simple de tamano n se tiene que

Y+ 7 1 - _ _
Var[ ; }:4(Var[Y]+Var[Z]—|—2Cov[Y,Z])
o2 1
= — 4+ — Y, Z
2n—|—2nCOV[ A
o CovlY.Z
—%( + Cov[Y, Z]).

Con este método se obtiene la misma varianza que si hubiéramos empleado 2n mues-
tras de la variable original, pero con una reduccién de —100(1 + p(Y, Z)) %. Nétese
que, para variables uniformes, si tomamos ¥ ~ U(0,1) y Z = 1 — Y, entonces Z
también serd uniforme en el intervalo (0,1) y Cov(Y,Z) < 0, por lo que el método
reduce la varianza original.

EJEMPLO 12. Supongamos que queremos aproximar

/0 ) de.

Podemos emplear el método de las variables antitéticas,

n

L g[S 0]
[ reae =2 [ FELEZD 2 08 gtw) + 500w

donde u;, i € {1,...,n} son observaciones de una uniforme U ~ U(0,1). Este
método, ademds, solo necesita de la generacion de n observaciones.
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