Educación

Sección a cargo de

María Luz Callejo

La Comisión Internacional de Educación Matemática (ICMI), que forma parte de la Unión Matemática Internacional (IMU), propone periódicamente el estudio de temas de actualidad en la educación matemática. El próximo tratará sobre *La enseñanza y aprendizaje de las matemáticas en la Universidad*. El documento base se presenta en el Boletín n° 43 del ICMI y se debatirá en un Congreso que tendrá lugar en Singapur del 8 al 12 de diciembre de 1998.

El documento tiene cinco partes. En la primera se justifica este estudio; en las tres siguientes se hace una presentación de los temas que serán objeto de debate en el Congreso: la investigación sobre la enseñanza/aprendizaje de las matemáticas en el nivel universitario, las prácticas y las políticas; la última expone el recorrido de estudio, discusión y divulgación de este trabajo que concluirá con una nueva publicación de la colección *Estudios ICMI*.

En la justificación se señalan algunos hechos que están afectando a la enseñanza de las matemáticas en el nivel universitario: el incremento del número de estudiantes, los cambios en el currículum en secundaria, la diferencia entre las finalidades, objetivos, contenidos y métodos de la enseñanza secundaria y la universitaria, el rápido desarrollo tecnológico y las demandas sobre la responsabilidad social de la Universidad. También se constata que algunos departamentos universitarios se encuentran a un doble reto: por un lado ha cambiado la formación matemática de los estudiantes respecto a épocas pasadas y por otro han disminuido las vocaciones a los estudios de matemáticas en favor de otras carreras con salidas profesionales mejor remuneradas. Además, la promoción del profesorado universitario se basa mucho más en la calidad de la actividad investigadora que en la de la docente.

Los objetivos de este estudio son los siguientes:

- Identificar, revisar, animar y divulgar la investigación en educación matemática en el nivel universitario.
- Identificar y describir los principales enfoques de la enseñanza de las matemáticas en diferentes culturas y tradiciones.
- Identificar los obstáculos que pueden impedir el aprendizaje de las matemáticas.
- Discutir la equidad y otras perspectivas de la educación matemática universitaria.
Discutir los objetivos que debe perseguir la enseñanza de las matemáticas dirigida a estudiantes con distintas experiencias y necesidades así como sobre quiénes se deberían responsabilizar de la misma.

Buscar modos de acoger los cambios necesarios sin comprometer la integridad de la materia.

Identificar, divulgar y someter a discusión nuevos métodos de enseñanza y el uso de la tecnología.

Discutir la transición y las relaciones entre la enseñanza secundaria y la universitaria.

Considerar formas de mejorar la preparación de los profesores de matemáticas en la universidad.

En cuanto al primer tema, la investigación sobre la enseñanza y aprendizaje de las matemáticas en la Universidad, se constata la ignorancia e indiferencia de muchos profesores universitarios sobre la misma. En este estudio se pretende resumir los resultados en esta materia, revisarlos y hacerlos accesibles a más profesores; asimismo se considerará las limitaciones de estas investigaciones a la luz de las prácticas de enseñanza y se delimitarán las áreas que precisan mayor investigación. Se plantean once grupos de cuestiones para debatir.

Con relación a las prácticas se consideran tres puntos: características de la población que actualmente estudia matemáticas en la universidad, el currículum de matemáticas (los objetivos que se deben perseguir con relación al cambio de población y a la evolución interna de la propia matemática y la actividad matemática de los estudiantes dentro y fuera de las aulas) y la pedagogía o intervención del profesor para crear contextos y situaciones de enseñanza/aprendizaje. Cada uno de estos aspectos se acompaña de un conjunto de cuestiones de debate. En cuanto a la política se distingue entre la de la sociedad y la de la Universidad. Se considera el control que la sociedad y los gobiernos ejercen sobre las universidades y las relaciones entre la comunidad matemática y la sociedad; con relación a la Universidad se plantean una serie de preguntas sobre la enseñanza de las matemáticas en carreras donde esta disciplina es una herramienta, como las ingenierías o las ciencias físicas, la especificidad de esta enseñanza, quién la enseña, el papel de los departamentos de matemáticas, etc. Tras el congreso se divulgarán sus conclusiones en el ICME 9 en Japón en el año 2000 y se preparará una publicación.

Este estudio se plantea a nivel general, sabiendo que la realidad educativa y universitaria varía mucho de unos países a otros, sin embargo en el documento se subraya más la problemática de los países desarrollados. De hecho, de los 11 miembros del comité de programa, 4 son europeos, 2 norteamericanos, 1 australiano, 2 asiáticos, 1 sudamericano y 1 africano.

En nuestro país no vendría mal hacer una reflexión sobre la educación matemática en la Universidad y la función docente del profesorado universitario así como sus consecuencias en la formación matemática de los jóvenes.
¿Es la actividad matemática algo emocional?

por

Inés María Gómez-Chacón

¿Son las matemáticas algo emocional? La gente suele decir que no, pero yo creo que sí lo son. Un matemático es una persona y tiende a sentir emociones fuertes sobre qué parte de las matemáticas está dispuesto a soportar y, naturalmente, emociones fuertes sobre otras personas y las clases de matemáticas que les gustan.

Por ejemplo: "¿qué prefieres, números o dibujos, símbolos o gráficas, álgebra o geometría?". Yo soy principalmente un hombre de números, y no sólo me ponen nervioso los dibujos, sino incluso la gente que los prefiere (Paul R. Halmos, 1991: 34).

Al igual que Halmos nosotros también creemos que la actividad matemática está relacionada con las emociones. Investigaciones recientes han puesto de manifiesto que el éxito y fracaso en la resolución de problemas depende de algo más que de los conocimientos matemáticos del resolutor. Conocer apropiadamente hechos, algoritmos y procedimientos no es suficiente para garantizar el éxito. Otros factores influyen en la dirección y el resultado de la ejecución de la tarea matemática como: las decisiones y estrategias relativas al control y regulación de la acción (es decir, decisiones relativas al análisis de las condiciones del problema, planificación de la acción, evaluación del proceso), las emociones y sentimientos al trabajar la tarea matemática (ansiedad, frustración, alegría) y las creencias acerca de la matemática y su aprendizaje (Garofalo y Lester,
1985; Schoenfeld 1985; McLeod, 1992). Todos estos factores, aunque no de forma explícita, dirigen el aprendizaje y el comportamiento matemático del sujeto dado que establecen el contexto personal dentro del cual funcionan los recursos, las estrategias heurísticas, y el control al trabajar la matemática.

A partir de un estudio amplio que realizamos sobre las influencias afectivas en el conocimiento de la matemática en poblaciones de fracaso escolar (Gómez-Chacón, 1997a) deseábamos poner de manifiesto la convicción práctica de la importancia que tiene bucear en la propia afectividad, en las emociones, en las motivaciones, a fin de percatarnos del profundo influjo que ejerce sobre nuestro dinamismo mental en la resolución de problemas.

El artículo comienza presentando algunas investigaciones sobre emoción y matemáticas. Posteriormente consideramos algunos elementos que la irrupción de la teoría de la inteligencia emocional aporta a la educación del afecto en matemáticas y terminaremos especificando algunas características o dimensiones del estado emocional del resolutor de problemas a tener en cuenta por el profesorado en el ámbito de la instrucción.

INVESTIGACIONES SOBRE EMOCIONES Y MATEMÁTICAS

En la actualidad asistimos en Didáctica de las Matemáticas, a un auge del interés por el estudio de las emociones. En los noventa se ha acuñado el término de Ciencia Afectiva (Ekman y Davidson, 1994) para designar la ciencia que estudia los fenómenos afectivos, especialmente la emoción.

En educación matemática el paradigma alternativo de investigación sobre el afecto que con más fuerza ha surgido en esta década se ha desarrollado a la sombra de los trabajos más recientes de la psicología cognitiva y del socioconstructivismo (McLeod 1992; Goldin, 1988; Cobb y otros, 1989). Las investigaciones de McLeod tienen como base las ideas de la teoría del psicólogo Mandler, quien ha aplicado sus propuestas a la enseñanza y aprendizaje de la resolución de problemas en matemáticas (Mandler 1989). Estos autores han dado relevancia a las emociones apoyándose en que la mayoría de los factores afectivos surgen de las respuestas emocionales a la interrupción de los planes en la resolución de problemas. Explican que la emoción se produce por la interrupción de un plan y como resultado de una serie de procesos cognitivos: evaluación de la situación, atribución de causalidad, evaluación de expectativas y de conformidad con las normas sociales, evaluación de expectativas en relación a los objetivos.

Las teorías cognitivas de la emoción postulan, por un lado, una serie de procesos cognitivos (evaluativos, atributivos, etc.) que se sitúan entre la situación que crea el estímulo y la respuesta emocional; por otro, estudian los contenidos subjetivos (representaciones cognitivas y afectivas) que se manifiestan en la reacción emocional (experiencia subjetiva). Las diferencias más significativas entre la perspectiva cognitiva y constructivista radican en la forma de conceptualizar la naturaleza de la emoción, en la importancia que dan a la estructura social y cultural en la determinación del estado afectivo.
Utilizamos el término dominio afectivo en matemáticas para referirnos a un extenso rango de sentimientos y humores (estados de ánimo) que son generalmente considerados como algo diferente de la pura cognición e incluimos como descriptor específicos de este dominio las emociones, las actitudes, las creencias. Estos últimos, además de los sentimientos, tienen una fuerte componente cognitiva (Figura 1).

Figura 1: Diagrama interpretativo de los descriptor específicos del dominio afectivo en matemáticas

Las emociones son respuestas organizadas más allá de la frontera de los sistemas psicológicos, incluyendo lo fisiológico, cognitivo, motivacional y el sistema experiencial. Surgen en respuesta a un suceso, bien interno o externo, que tiene una carga de significado positiva o negativa para el individuo. La clase de valoraciones relacionadas con el acto emocional sigue al acontecimiento de alguna percepción o discrepancia cognitiva en la que las expectativas del sujeto se violan. Tales expectativas son expresiones de las creencias de los
estudiantes acerca de la naturaleza de la actividad matemática, de sí mismos, y acerca de su rol como estudiantes en la interacción en la clase. Las creencias de los estudiantes, que parecen ser un aspecto crucial en la estructuración de la realidad social del aula –dentro de la que se enseña y aprende–, hacen derivar el significado de los actos emocionales. El estudio de las prácticas sociales, de las condiciones culturales puede ayudar a dar significado a las reacciones emocionales de los individuos en el aula, éstas están estrechamente ligadas a ciertos valores y a la definición de la identidad social del sujeto (Gómez-Chacón, 1997a).

EL DESARROLLO DE LA INTELIGENCIA EMOCIONAL EN MATEMÁTICAS

El corpus de investigaciones realizadas sobre afecto se han centrado en cuestiones sobre la naturaleza de la emoción y sobre la interacción, cognición y afecto, focalizando el objeto de sus estudios en procesos cognitivos como la memoria, la comprensión, etc. Estos estudios adolecen de un enfoque tradicional y no aportan una visión amplia del aspecto emocional y sobre la educación de la afectividad. Lentamente va emergiendo un interesante debate en las investigaciones que, si bien apunta en direcciones muy diferentes, permite examinar cómo las personas valoran y comunican la emoción y cómo la usan en la resolución de problemas.

Salovey y Mayer (1990) han establecido un modo de conceptualización amplio de la inteligencia y han tratado de formularlo en una línea de investigación que describen, de forma breve, como un camino que aporta más inteligencia a nuestras emociones. Así, proponen el término de “inteligencia emocional” y la definen como:

“la faceta de la inteligencia social que involucra la habilidad para manejar nuestros propios sentimientos y los sentimientos de otros, discriminando entre ellos y usando esta información como guía de nuestro pensamiento y acciones” (Salovey y Mayer 1990: 189).

Estos autores crean un concepto de inteligencia emocional que incluye los procesos mentales involucrados en la información emocional: la valoración y expresión de la emoción, la regulación de la emoción y su utilización. Las relaciones entre estos componentes se recoge en la Figura 2. Aunque los autores señalan que estos procesos mentales son comunes a toda la gente, su modelo presta atención a las diferencias individuales (relativas a estilos de procesamiento y habilidades). Esto es importante por dos razones: el reconocimiento a las diferentes capacidades de las personas para comprender y expresar sus emociones; y porque tales diferencias son una puerta abierta a que habilidades subyacentes se puedan aprender y modificar.

Los procesos que conceptualizan la inteligencia emocional se presentan como un potencial tanto intrapersonal como interpersonal. Los autores piensan que es importante para el individuo ser capaz de valorar y regular sus emociones, expresarlas a otros y usar esta información en la resolución de pro-
blemas intrapersonales (por ejemplo, considerar los factores emocionales en la toma de decisiones). Es igualmente importante que los individuos sean capaces de hacer lo mismo con las emociones de los otros (por ejemplo, tranquilizar en las alteraciones).

La persona alfabetizada emocionalmente en matemáticas es aquella que ha desarrollado su inteligencia emocional en este contexto, que ha logrado una forma de interaccionar con este ámbito, y que tiene muy en cuenta los sentimientos y emociones propios y ajenos. La alfabetización emocional engloba habilidades tales como el control de los impulsos y fobias en relación a la asignatura (lo cual permite desarrollar la necesaria atención para que se logre el aprendizaje), la autoconciencia, la motivación, el entusiasmo, la perseverancia, la empatía, la agilidad mental, etc.

![Inteligencia Emocional](image)

Figura 2: Relaciones entre los procesos involucrados en la información emocional

Quizás, para dar el primer paso en la alfabetización emocional que pretendemos, debamos observar la interacción en el aula, los procesos mentales involucrados en la información emocional: valoración, expresión, regulación y utilización. También será importante detectar qué elementos curriculares favorecen en el estudiante la habilidad de aprovechar sus propias emociones, en orden a trabajar las actividades matemáticas. Los datos de estos estudios empíricos –marco teórico– nos muestran la considerable mejora que supone para la competencia emocional el abordar los anteriores aspectos en el currículo de quienes reciben este tipo de formación. Destacamos los siguientes (Gómez-Chacón, 1997b, 1998):

- factores afectivos y creencias acerca de la naturaleza de la matemática
- matemáticas y cultura: las matemáticas como conocimiento cultural
- la influencia de la historia personal en las actitudes y apreciaciones
- interacción cognición y afecto, dimensiones del estado emocional del resolutor
- el autoconcepto del alumno como aprendiz de matemáticas

DIMENSIONES DEL ESTADO EMOCIONAL DEL RESOLUTOR DE PROBLEMAS

Especificamos algunas características o dimensiones del estado emocional del resolutor de problemas en el ámbito de la instrucción matemática: magnitud, dirección de la emoción, duración, nivel de consciencia y de control del estudiante, afecto local y global.

Magnitud y dirección

Las influencias afectivas en resolución de problemas varían en su intensidad (o magnitud) tanto como en su dirección (positiva o negativa). Los estudiantes expresan como reacciones más comunes la frustración, al emprender algo en serio, una reacción que es normalmente intensa y negativa; y otras positivas, como el ¡Ajá!, percibida de forma también intensa. Otras reacciones ante los problemas, tales como el agrad o la simpatía porque tienen aplicación al mundo real, parecen menos intensas que la frustración o la satisfacción.

Duración

Las reacciones emocionales en resolución de problemas son especialmente intensas, pero de relativa corta duración. Los estudiantes mantienen dificultades en resolución de problemas si sus reacciones son intensas y negativas: tienden a abandonar y así pretenden reducir la magnitud de su emoción. Los estudiantes que perseveran parecen oscilar alternativamente entre emociones positivas (cuando sienten que han progresado) a emociones negativas (cuando sienten que se han bloqueado). En cada dirección la magnitud puede ser bastante grande.

Nivel de consciencia

Habitualmente los resolutores no son conscientes de las emociones que les influyen en el proceso de resolución de problemas. La falta de consciencia está estrechamente relacionada con la noción de capacidad de procesamiento limitada y de memoria a corto plazo. Aunque los estudiantes puedan percibir su reacción emocional, su consciencia puede no situarse en el nivel consciente mucho tiempo. Por ejemplo, una interrupción en un plan de resolución de un problema puede causar frustración y el resolutor puede reducirla retomando el problema y marcando una nueva meta, o realizando un plan diferente que no se vea interrumpido. Los resultados obtenidos en la observación de los estudiantes, pusieron de manifiesto que la reducción de la frustración ocurre rápidamente, siempre automáticamente, y no siendo los estudiantes realmente
conscientes de este proceso. Si el resolutor de problemas es consciente de sus reacciones emocionales, puede mejorar su habilidad para controlar sus respuestas automáticas en resolución de problemas y lograr un mayor éxito.

Nivel de control

Los estudiantes pueden sentir mayor dificultad para controlar algunas emociones. Por ejemplo, el sujeto que experimenta profundo miedo ante la resolución de problemas le puede costar tenerlo bajo control. No obstante, muchas de las reacciones emocionales típicas en resolución de problemas pueden ser fáciles de controlar. Cuando un alumno comprende que la resolución de problemas involucra interrupciones y bloqueos, puede percibir su frustración como una parte habitual en la resolución y, no como una señal que induzca el abandono del problema. Del mismo modo, los estudiantes pueden aprender que la alegría que les produce el descubrimiento de una solución no debe provocar el relax y en esa situación, es importante continuar con otra tarea. Esta perspectiva de las emociones posibilita que el resolutor aprenda a revisar soluciones y a buscar otras más elegantes y aproximaciones alternativas. Muchos de los modelos de instrucción en resolución de problemas pretenden que los individuos traten de conocer sus procesos cognitivos y elijan estrategias más efectivas que la de ensayo y error. De la misma forma, la instrucción en cuestiones afectivas puede ayudar a los estudiantes a controlar sus reacciones emocionales de frustración y alegría en resolución de problemas.

Afecto global y afecto local

En el estudio de casos que realizamos en la investigación, a la que aludimos al comienzo de este artículo, (Gómez-Chacón, 1997a) se puso de manifiesto que para comprender las relaciones afectivas de los estudiantes con la matemática no basta con observar y conocer los estados de cambio de sentimientos o reacciones emocionales durante la resolución de problemas (afecto local) y detectar procesos cognitivos asociados con emociones positivas o negativas. Por ejemplo, las dificultades de comprensión del problema o dificultades de recuperación de la memoria provocan en el sujeto frustración y ansiedad; o que la toma de conciencia del progreso personal en el aprendizaje provoca alegría y satisfacción; o que la curiosidad puede favorecer el desarrollo de procesos heurísticos importantes para la planificación indagatoria, etc. Junto a detectar estas relaciones significativas que se pueden establecer entre cognición y afecto y sus posibles utilizaciones en la enseñanza y aprendizaje de la matemática, consideramos necesario –y así lo ratifican nuestros datos– que para comprender la dimensión afectiva del estudiante en relación a la matemática hay que tener en cuenta su dimensión afectiva en escenarios más complejos (afecto global) que permiten contextualizar las reacciones emocionales en la realidad social que las produce. Es importante conocer y comprender el sistema de valores, ideas y prácticas del contexto (de la cultura), puesto que éstos cumplen la función de establecer un orden que permite al individuo orientarse y le proporciona un
código de comunicación. Por tanto, parece conveniente que en las investigaciones sobre dimensión afectiva y matemáticas se aborden las dos estructuras de afecto en el sujeto la local y la global. Ésta última implica contemplar a la persona en situación, conociendo los sistemas de creencias del individuo (creencias como aprendiz de matemáticas, creencias sobre las matemáticas, creencias sobre el contexto escolar), las representaciones sociales y el proceso de construcción de la identidad social del sujeto.

A MODO DE EPÍLOGO

Para concluir, queremos advertir de la importancia de que el profesorado conozca los avances de las investigaciones en Educación Matemática como es la descripción y análisis de los distintos factores afectivos que influyen en el aprendizaje de la matemática. Hay que tener en cuenta que éstos establecen el contexto personal del estudiante dentro del cual funcionan los recursos, las estrategias heurísticas, y el control al trabajar la matemática. Urge plantearse “metas afectivas locales” para la enseñanza de la resolución de problemas, por ejemplo: generar problemas a partir de la curiosidad de los alumnos; desarrollar el sentido de discernimiento sobre qué intuiciones o presentimientos son apropiados; enseñarles heurísticas que puedan utilizar cuando acontecen esas intuiciones o cuando experimentan la perplejidad, el desconcierto o el bloqueo. Deberían aprender respuestas para esas emociones negativas, utilizándolas para transformar la dirección y calidad del afecto que les permita volver a la ruta positiva del afecto –de diversión, placer, regocijo, satisfacción– y posibilitarle estrategias para que modifiquen las creencias que le producen reacciones negativas.

Bibliografía

Inés María Gómez-Chacón, Departamento de Didáctica de las Matemáticas, Instituto de Estudios Pedagógicos Somosaguas (IEPS), C/ Vizconde de Matamala 3, 28028 Madrid.

e-mail: ines@ieps.com