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Sobre la conjetura de salto espectral
de Kannan, Lovász y Simonovits

por

David Alonso-Gutiérrez y Jesús Bastero∗

Resumen. En este artículo presentamos la conjetura KLS sobre el valor de
la constante en la desigualdad de Poincaré desde el punto de vista analítico-
funcional, así como su relación con otras importantes conjeturas dentro del
análisis geométrico asintótico, y damos una idea de la demostración de Eldan,
Lee y Vempala que proporciona la mejor estimación conocida hoy en día del
valor de dicha constante.

1. Introducción

La conjetura sobre la que versan estas líneas, denominada conjetura KLS por
las iniciales de Kannan, Lovász y Simonovits, es uno de los problemas abiertos más
importantes dentro del análisis geométrico asintótico, que es la parte del análisis ma-
temático que estudia problemas de alta dimensión y el comportamiento de diferentes
parámetros y propiedades cuando la dimensión tiende a infinito. Esta conjetura tiene
la particularidad de que en su origen, formulación y estudio aparecen involucradas
diversas partes de las matemáticas como son el análisis funcional, la geometría con-
vexa y diferencial, la probabilidad, el cálculo diferencial estocástico y la ciencia de
la computación teórica. De hecho, es en esta última teoría donde tiene sus raíces.

En la teoría de algoritmos es importante muestrear eficientemente conjuntos y
distribuciones en alta dimensión. Es decir, generar un vector aleatorio que tenga
una distribución uniforme sobre un cuerpo convexo en dimensión n y calcular la
complejidad de los algoritmos que lo proporcionan.

La presentación que haremos aquí de la conjetura la enfocaremos desde una
perspectiva analítico-geométrica. En contraposición, y como lectura complementaria,
recomendamos al lector interesado consultar el instructivo artículo [26], donde los
autores, Lee y Vempala, presentan este mismo problema desde el punto de vista de
la teoría de la complejidad computacional que, desde luego, está más cercano a sus
orígenes.

En efecto, en su trabajo [20], Kannan, Lovász y Simonovits estudian la com-
plejidad de un algoritmo probabilista diseñado para el cálculo del volumen de un
cuerpo convexo en Rn. En algún momento necesitan estimar la relación existente
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entre la superficie que aparece cuando un cuerpo convexo se divide en dos partes
y el volumen de esas partes. Cuanto mejor se estime esa relación más se puede afi-
nar la estimación de la complejidad del algoritmo (ver la sección 4 y, mejor aún, el
mencionado artículo [26]).

El problema que se presenta es de naturaleza isoperimétrica, dado que estudia
la relación entre superficies y los volúmenes rodeados, y es un hecho clásico y bien
conocido que las desigualdades isoperimétricas tienen una interpretación analítico-
funcional (ver [6]). Este es, pues, nuestro modo de ver la conjetura y así la presen-
tamos.

La desigualdad isoperimétrica clásica en Rn dice que, para cada boreliano acotado
A ⊆ Rn,

|A+|
|A|n−1

n

≥ |Sn−1|
|Bn2 |

n−1
n

,

donde |A| es el volumen o medida de Lebesgue n-dimensional de A en Rn, |A+| es
el contenido exterior de Minkowski definido por

|A+| := ĺım inf
ε→0

|Aε| − |A|
ε

,

siendo Aε = {a + x; a ∈ A, |x| < ε} la ε-dilatación de A, Bn2 es la bola euclídea
unidad, Sn−1 la superficie esférica de radio 1, y |Sn−1| su medida de Hausdorff (es
bien conocido que |A+| coincide con la medida de Hausdorff (n − 1)-dimensional
de la frontera para los borelianos acotados con frontera regular). Esta desigualdad
tiene un equivalente analítico-funcional, la desigualdad de Sobolev en el extremo.
En efecto, probar que

|A+| ≥ C|A|
n−1

n ,

con una constante C, para todo boreliano acotado, es equivalente a demostar que

‖ |∇f | ‖1 ≥ C‖f‖ n
n−1

con la misma constante, para cualquier función C(1) de soporte compacto f : Rn →
R, donde ‖f‖ n

n−1
representa la norma p de la función f para p = n/(n − 1); véase,

por ejemplo, [16].

A
K \A∂A

En nuestro caso, el problema isoperimétrico que
nos planteamos es el siguiente. Supongamos que
K ⊆ Rn es un cuerpo convexo, es decir, un conjunto
compacto y convexo en Rn con interior no vacío, de
volumen o medida de Lebesgue |K| = 1. Dividamos
K en dos partes disjuntas K = A ∪ (K \ A) con
A ⊆ K boreliano.

Llamemos, como antes,

|A+| = ĺım inf
ε→0

|(A+ εBn2 ) ∩K| − |A|
ε

.
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Notemos que, en general, |A+| y |(K \ A)+| podrían no coincidir. Sin embargo, en
situaciones suaves, |A+| representa la medida de la frontera de A dentro de K.

La pregunta que nos hacemos es: ¿cuál es la mejor constante ψK que verifica

|A+| ≥ ψK mı́n{|A|, |K \A|} (1)

para cualquier A ⊆ K boreliano? Llamaremos constante de Cheeger deK a ψK , pues
fue Cheeger quien introdujo esta desigualdad para desigualdades isoperimétricas en
variedades riemannianas.

Como sucede con la situación clásica antes presentada, también hay una formu-
lación analítico-funcional equivalente en este caso. Se conoce como la desigualdad de
Poincaré del cuerpo convexo K.

2. La desigualdad de Poincaré y la conjetura KLS

SeaK un cuerpo convexo; la desigualdad de Poincaré dice que existe una constan-
te CK > 0, dependiente de K, tal que, para cualquier función de cuadrado integrable
y localmente Lipschitz f que cumpla

∫
K
f(x) dx = 0, se verifica∫

K

f(x)2 dx ≤ CK
∫
K

|∇f(x)|2 dx

(recordemos que una función localmente Lipschitz es diferenciable en casi todo punto,
por el teorema clásico de Rademacher).

En dimensión n = 1 este resultado se conoce como desigualdad de Wirtinger y
es consecuencia directa de la identidad de Parseval. En efecto, si suponemos que
la función es suficientemente regular y cumple la condición anterior, cambiando de
variable para que K = [0, 2π] y desarrollando en serie de Fourier tenemos∫ 2π

0
|f(x)|2 dx =

∞∑
n=−∞

|f̂(n)|2 =
∞∑

n=−∞
n 6=0

|f̂(n)|2

≤
∞∑

n=−∞
n 6=0

n2|f̂(n)|2 =
∫ 2π

0
|f ′(x)|2 dx.

En dimensiones superiores, utilizando que menos el laplaciano, −∆, en K tiene
asociada una sucesión de autovalores λn,K con sus correspondientes autofunciones,
puede darse una demostración muy similar a la anterior, obteniéndose entonces que

λ1,K

∫
K

f(x)2 dx ≤
∫
K

|∇f(x)|2 dx. (2)

La constante CK que aparece en la desigualdad de Poincaré es, pues, exactamente
igual al inverso del primer autovalor no nulo de −∆ en ese dominio, y es la mejor
constante posible.
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Existe una relación muy estrecha y bien conocida entre la constante ψK que
aparece en la desigualdad (1) y la λ1,K de (2). Para ello adoptamos un punto de
vista y notación probabilista. Denotaremos

Ef = 1
|K|

∫
K

f(x) dx

y así la desigualdad de Poincaré se puede escribir como

E(f − Ef)2 ≤ CKE|∇f |2 ∀f ∈ L2 ∩ loc. Lips.

o, equivalentemente,

Var f ≤ CKE|∇f |2 ∀f ∈ L2 ∩ loc. Lips. (3)

(usamos Var para denotar la varianza). La relación entre las desigualdades (1) y
la (2) o (3) viene dada por un teorema bien conocido y debido a muchos autores:
por ejemplo, Rothaus, Cheeger, Maz’ja, Ledoux, E. Milman (ver [27], [24], [28] y las
referencias ahí incluidas):
Teorema 2.1. Sea µ una probabilidad de Borel en Rn. Las siguientes afirmaciones
son equivalentes:

a) Para cualquier subconjunto boreliano A ⊆ Rn,

µ+(A) ≥ ψµ mı́n{µ(A), µ(Ac)}.

b) Para cualquier función f : Rn → R integrable y localmente Lipschitz,

C1,µEµ |f − Eµf | ≤ Eµ|∇f |.

Además, C1,µ ≤ ψµ ≤ 2C1,µ.
Si suponemos una condición extra sobre la probabilidad µ, el ser log-cóncava

(ver a continuación su definición), entonces las dos afirmaciones anteriores son
equivalentes a la desigualdad de Poincaré, es decir, que µ verifica

λ1,µ Varµ f ≤ Eµ|∇f |2 ∀f ∈ L2
µ ∩ loc. Lips.

Las constantes también son equivalentes: ψµ ∼
√
λ1,µ salvo constantes absolutas,

independientes no solo de µ sino incluso de la dimensión.

Una probabilidad µ en Rn es log-cóncava si es de la forma dµ(x) = e−V (x) dx,
donde V : Rn → (−∞,∞] es una función convexa. Ejemplos de este tipo de proba-
bilidades son:

la exponencial, dµ(x) = Ze−|x−b| dx, b ∈ Rn;
las gaussianas, dµ(x) = Ze−〈B(x−b),x−b〉 dx, b ∈ Rn y B matriz simétrica
definida positiva;



La Gaceta ? Artículos 53

las distribuciones uniformes sobre cuerpos convexos, dµ(x) = |K|−1χK(x) dx,
K un cuerpo convexo.

Estas últimas son, de hecho, las más importantes en el sentido de que cualquier
otra probabilidad log-cóncava es límite de marginales de uniformes sobre cuerpos
convexos de dimensión superior.
Nota. La tercera afirmación que aparece en el teorema precedente es incluso más
fuerte. De hecho, E. Milman (ver [28]) demostró que las tres afirmaciones del teorema
anterior son también equivalentes a

C1,∞,µEµ|f − Eµf | ≤ ‖ |∇f | ‖∞

para todas las funciones integrables localmente Lipschitz, con C1,µ ∼ C1,∞,µ sal-
vo constantes absolutas (ver [28]). Este hecho es cierto no solo para probabilidades
log-cóncavas, sino en variedades riemannianas con curvatura de Ricci acotada infe-
riormente.

A partir de ahora consideraremos solo probabilidades µ log-cóncavas en Rn. El
objetivo es estimar su constante de Cheeger o, equivalentemente, la mejor constante
de la desigualdad de Poincaré que cumplen. Comenzamos renormalizando µ. En
primer lugar, mediante una traslación podemos suponer que su baricentro es el origen
de coordenadas. A continuación vamos a renormalizar de acuerdo con su matriz de
covarianzas. Recordemos que la matriz de covarianzas de una probabilidad es

Cov(µ) = Eµ(x− b)⊗ (x− b) = (Eµxixj − EµxiEµxj)i,j ,

que es una matriz simétrica definida positiva y por tanto diagonalizable (b es el
baricentro de µ: b = Eµx). No es difícil probar que mediante un cambio de variable
lineal se puede conseguir que la matriz de covarianzas de la nueva probabilidad sea
la matriz identidad en Rn.

Llamaremos, pues, probabilidades isotrópicas a las que cumplen estas dos condi-
ciones:

Eµx = 0,
Cov(µ) = In.

Por el comentario anterior, toda probabilidad log-cóncava puede transformarse
en isotrópica mediante un cambio de variable afín, y además esta transformación es
única salvo transformaciones ortogonales.

La conjetura KLS puede enunciarse así:
Conjetura 1 (Kannan, Lovász y Simonovits [20]). Existen constantes absolutas
C1, C2 > 0 tales que, para cualquier probabilidad log-cóncava e isotrópica µ en Rn,

C1 Varµ f ≤ Eµ|∇f |2 ∀f ∈ L2 ∩ loc. Lips.

o, equivalentemente,

µ+(A) ≥ C2 mı́n{µ(A), µ(Ac)} ∀ boreliano A ⊆ Rn.
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Si no consideramos la normalización, la conjetura para cualquier probabilidad log-
cóncava sería

C1

‖Cov(µ)‖op
Varµ f ≤ Eµ|∇f |2 ∀f ∈ L2 ∩ loc. Lips.

o, equivalentemente,

µ+(A) ≥ C2

‖Cov(µ)‖1/2op
mı́n{µ(A), µ(Ac)} ∀ boreliano A ⊆ Rn

(la expresión ‖ · ‖op representa la norma de la matriz como operador lineal continuo
en el espacio euclídeo Rn).

Si la conjetura fuera cierta, además de las consecuencias que se se derivan desde
el punto de vista de la complejidad computacional, que se explican en la sección 4,
y las otras conjeturas relacionadas con ella, véase la sección 3, hay un hecho que se
deduce desde el punto de vista geométrico: de todas las maneras posibles que hay
de dividir un cuerpo convexo en dos partes con el mismo volumen, la que menos
sección presenta, salvo constantes absolutas, es cortar por hiperplanos.

Kannan, Lovász y Simonovits, ver [20], demostraron que si µ es una probabilidad
log-cóncava en Rn entonces

µ+(A) ≥ C

Eµ|x|
mı́n{µ(A), µ(Ac)},

para todo boreliano A ⊆ Rn. También demostraron que si µ es la probabilidad
uniforme sobre un cuerpo convexo K ⊆ Rn entonces

µ+(A) ≥ C

EµθK(x) mı́n{µ(A), µ(Ac)},

para todo boreliano A ⊆ Rn, donde θK(x) es la longitud del mayor intervalo centrado
en x contenido en K.

El mejor resultado general conocido hasta ahora fue demostrado por Lee y Vem-
pala, adaptando el método introducido por Eldan. Se trata del siguiente resultado:
Teorema 2.2 (Eldan [13], Lee y Vempala [25]). Sea µ una probabilidad isotrópica
y log-cóncava en Rn. Entonces

C1√
n

Varµ f ≤ Eµ|∇f |2 ∀f ∈ L2 ∩ loc. Lips.

y, equivalentemente,

µ+(A) ≥ C2

n1/4 mı́n{µ(A), µ(Ac)} ∀ boreliano A ⊂ Rn,

siendo C1 y C2 constantes absolutas.
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3. Otras conjeturas relacionadas

A continuación presentaremos otras dos conjeturas que aparecieron independien-
temente y que se ha probado que están íntimamente relacionadas con la conjetura
KLS: la conjetura del hiperplano (slicing problem) y la de la varianza (thin shell
conjecture). De hecho, la conjetura de la varianza es un caso particular de la conje-
tura KLS.

3.1. La conjetura del hiperplano

La conjetura del hiperplano fue formulada por Bourgain en 1986 cuando probó
el teorema de acotación en norma p de la función maximal de Hardy-Littlewood
sobre cuerpos convexos ([8]). Allí apareció la llamada constante de isotropía LK
de un cuerpo convexo K. Demostró que siempre LK > C1 > 0 para todo K y en
toda dimensión, siendo C1 una constante absoluta. Bourgain planteó que también
debía ser cierta la acotación inversa LK < C2 para todo K y toda dimensión, con
una constante absoluta C2. Así formulada, esta conjetura apareció en [30]. Puede
reformularse de una manera más sencilla, pero equivalente:
Conjetura 2 (Conjetura del hiperplano, Bourgain, 1986). Existe una constante
universal C > 0 tal que, para todo cuerpo convexo K ⊂ Rn de volumen |K| = 1, se
puede encontrar un hiperplano (n− 1)-dimensional H que verifica

|K ∩H|n−1 ≥ C,

es decir, las secciones (n− 1)-dimensionales no pueden ser todas a la vez uniforme-
mente pequeñas.

Bourgain dio la primera estimación conocida:
Teorema 3.1 (Bourgain [9]). Existe una constante universal C > 0 tal que, para
todo cuerpo convexo K ⊂ Rn de volumen |K| = 1, se puede encontrar un hiperplano
H que verifica

|K ∩H|n−1 ≥
C

n1/4 logn
,

con C > 0 constante absoluta.

La mejor estimación hasta el momento fue obtenida por Klartag y ahora, como
consecuencia del teorema 2.2, se tiene una demostración alternativa:
Teorema 3.2 (Klartag [21], Eldan, Lee y Vempala [13], [25]). Existe una constante
universal C > 0 tal que, para todo cuerpo convexo K ⊂ Rn de volumen |K| = 1, se
puede encontrar un hiperplano H que verifica

|K ∩H|n−1 ≥
C

n1/4 .
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3.2. La conjetura de la varianza

Esta nueva conjetura está centrada en cómo se distribuye la masa en los cuerpos
convexos de gran dimensión. En particular, ¿cómo se distribuye la variable aleatoria
|x| con respecto a la probabilidad uniforme sobre un cuerpo convexo?

En 2003 Antilla, Ball y Perissinaki (ver [3]) conjeturaron que en las probabilida-
des log-cóncavas e isotrópicas la masa estaba concentrada en una estrecha concha
(thin shell) más de lo que la trivial estimación Varµ |x| ≤ Eµ|x|2 sugería. Bobkov y
Koldobsky formularon la siguiente conjetura (ver [7]):
Conjetura 3. Existe una constante absoluta C > 0 tal que, para toda probabilidad
log-cóncava e isotrópica µ en Rn, se tiene

Eµ
∣∣|x| − √n∣∣2 ≤ C. (4)

En particular este hecho implica que

µ
{∣∣∣ |x|√n − 1

∣∣∣ > t
}
≤ 2e−C

′
√
tn1/2 ∀t > 0,

lo que indica que hay una gran concentración de masa en una estrecha corona o
concha esférica.

El mejor resultado obtenido hasta la fecha se deduce del teorema 2.2:
Teorema 3.3. Para probabilidades log-cóncavas isotrópicas,

Eµ
∣∣|x| − √n∣∣2 ≤ C√n,

con C > 0 constante absoluta. Si la probabilidad es solo log-cóncava,

Eµ
∣∣∣|x| − (Eµ|x|2)1/2∣∣∣2 ≤ C√n ‖Cov(µ)‖op .

Este resultado mejora estimaciones anteriores de varios autores: Klartag, Fleury,
Guédon y E. Milman (ver [22], [23], [17], [19]).

La conjetura de la varianza es más débil que la KLS, dado que no es difícil ver
que (4) es equivalente a

C1 Varµ |x|2 ≤ n,

que es el caso de la función f(x) = |x|2. Por otro lado, la conjetura de la varianza
es más fuerte que la conjetura del hiperplano de manera global. Esto significa que si
conseguimos una estimación para todas las probabilidades log-concavas isotrópicas,
la misma estimación es cierta para la conjetura del hiperplano para todas ellas.

Además hay una manera directa, aunque no sencilla (ver [4]), de probar que, para
una µ fijada, la estimación que se obtiene en la conjetura KLS implica otra estimación
para la conjetura del hiperplano, que es de carácter exponencial. Para consultar
referencias y más información sobre estas conjeturas puede verse, por ejemplo, [10],
[1], [2]. Estos hechos vienen reflejados en la figura 1.
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Conjetura de salto
espectral de Kannan,
Lovász y Simonovits

Conjetura
de la varianza

Conjetura
del hiperplano(globalmente)

log2 n (globalmente)

(individualmente)

(individualmente)

Figura 1: Implicaciones entre las conjeturas.

4. Motivación: algoritmo de cálculo de volúmenes

El origen de la conjetura KLS se halla en el problema de la construcción de un
algoritmo eficiente (es decir, con bajo coste computacional) para calcular el volumen
de un cuerpo convexo en dimensión n.

Más concretamente, se trata de diseñar un algoritmo que reciba como entrada
un cuerpo convexo K ⊆ Rn, un punto x0 ∈ K y un parámetro ε > 0 que indique el
error permitido, y devuelva como salida un número V tal que

(1− ε)|K| ≤ V ≤ (1 + ε)|K|.

El cuerpo convexo se le proporciona al algoritmo como entrada en forma de oráculo
de la pertenencia (membership oracle), es decir, como otro algoritmo que recibe como
entrada un punto x ∈ Rn y devuelve como salida

χK(x) =
{

1 si x ∈ K,
0 si x 6∈ K.

La complejidad del algoritmo mide el número de operaciones aritméticas y llamadas
al oráculo que se hagan.

Es bien conocido que cualquier algoritmo determinista tiene una complejidad
exponencial, ver [15] y [5]. Sin embargo, en 1989, Dyer, Frieze y Kannan (ver [12])
construyeron un algoritmo aleatorizado con complejidad polinomial:
Teorema 4.1. Existe un algoritmo que recibe como entrada un cuerpo convexo
K ⊆ Rn, un punto x0 ∈ K, un parámetro de error ε > 0 y un parámetro de
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probabilidad 0 < δ < 1, y devuelve como salida un número aleatorio V tal que

(1− ε)|K| ≤ V ≤ (1 + ε)|K|

con probabilidad mayor que 1− δ. Además, este algoritmo tiene complejidad polino-
mial en n, 1

ε , y log 1
δ .

La construcción de este algoritmo estaba basada en la construcción de un al-
goritmo de muestreo (sampling algorithm). Es decir, un algoritmo que reciba como
entrada un cuerpo convexo K ⊆ Rn, un punto x0 ∈ K y un parámetro de error ε, y
devuelva como salida un punto aleatorio x ∈ Rn distribuido con una probabilidad ν
tal que

dTV

(
ν,
χK(x)
|K|

dx

)
:= sup

A⊆K

∣∣∣∣ν(A)− |A|
|K|

∣∣∣∣ ≤ ε
(dTV representa la distancia en variación total de las dos medidas).

La forma de construir un algoritmo de muestreo es mediante un camino aleatorio
(random walk) de la siguiente manera: partiendo del punto x0 recibido como entrada,
se toma un punto aleatorio x1 distribuido mediante una distribución de probabilidad
elegida dependiente de x0. A continuación, mediante una llamada al oráculo de
pertenencia, se comprueba si x1 pertenece o no pertenece aK. Si x1 ∈ K se mantiene
su valor. Si no, se toma x1 = x0. Repitiendo el proceso, construyendo x2 a partir
de x1, y xn+1 a partir de xn, se construye una sucesión de vectores aleatorios en
la que la distribución de cada vector xn+1 depende únicamente del vector aleatorio
anterior. Bajo ciertas condiciones la distribución de xn converge en variación total
a la distribución de probabilidad uniforme sobre K. Cuanto más rápida sea esta
convergencia menor será la complejidad computacional del algoritmo de muestreo.

Una posible manera de contruir este camino aleatorio sería tomando el punto
xn+1 a partir de xn uniformemente distribuido en una bola de centro x0 y radio ρ
(ball walk). En el trabajo [12] los autores construyen un camino aleatorio sobre una
red de cubos para probar que la distribución del punto xt converge a la distribución
uniforme sobre K en tiempo polinomial. Se necesita probar que, para un cuerpo
convexo con frontera suave construido dentro del cuerpo K inicial, la probabilidad
uniforme sobre su superficie satisface una desigualdad isoperimétrica de tipo Chee-
ger. Los autores conjeturaron que cualquier cuerpo convexo satisface este tipo de
desigualdad con constante un polinomio fijo en n y en el diámetro de K. Si dicha
conjetura fuese cierta se podría simplificar su prueba y demostrar una velocidad de
convergencia mayor que la que obtuvieron. No obstante, con este tipo de caminos
aleatorios no se puede mejorar la estimación de la complejidad computacional de
orden O(n8).

Kannan, Lovász y Simonovits mejoraron estas estimaciones construyendo otro
tipo de caminos aleatorios y conjeturaron una cota inferior para la constante de
Cheeger C2/‖Cov(µ)‖1/2op , donde µ es la probabilidad uniforme en K. Si la conjetura
KLS fuese cierta, se obtendría una complejidad computacional para el algoritmo de
muestreo de orden O(n2). La mejor estimación hasta el momento de la complejidad
computacional del algoritmo de muestreo es de orden O(nc) para una constante c
entre 2 y 3.
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Merece la pena señalar que, si la conjetura KLS fuese cierta, la complejidad de
orden O(n2) en el algoritmo de muestreo permitiría construir un algoritmo de cálcu-
lo de volumen de complejidad O∗(n3), donde O∗ suprime la factores logarítmicos.
En [11], Cousins y Vempala construyeron un algoritmo de cálculo de volumen con es-
ta complejidad, evitando así el problema de validar la veracidad de la conjetura KLS.
No obstante, la construcción de algoritmos de muestreo eficientes sigue siendo una
cuestión importante en ciencias de la computación teórica, ya que otros problemas
se reducen al muestreo.

5. Una idea de la demostración del resultado de Eldan,
Lee y Vempala, teorema 2.2

Terminamos esta presentación de la conjetura KLS dando una idea de la demos-
tración de Lee y Vempala, que se basa en el método de localización de Eldan. Fue
este autor, Eldan, quien presentó este método, que le permitió demostrar que, salvo
factores logarítmicos, la mejor acotación universal para la conjetura de la varianza
es equivalente a la mejor acotación para la conjetura KLS, ver [13]. Lee y Vempala,
utilizando la localización de Eldan con un pequeño cambio en el sistema diferen-
cial estocástico y dando una acotación a los momentos de orden tres, consiguieron
demostrar el teorema.

La idea de Eldan que pasaremos a comentar se basa en dos resultados previos. El
primero de ellos es que, para dar una estimación de la constante de isoperimetría, el
papel relevante lo juegan los conjuntos de medida 1/2. Concretamente, si controla-
mos inferiormente las dilataciones de estos conjuntos, podemos estimar la constante
de Cheeger de la medida.
Teorema 5.1 (E. Milman [29]). Sea µ una probabilidad isotrópica y log-cóncava
en Rn. Supongamos que hay dos constantes Θ, C > 0 para las que la desigualdad

µ(EΘ \ E) ≥ C

se cumple para cualquier subconjunto boreliano E ⊆ Rn con µ(E) = 1
2 , donde E

Θ

es la Θ-dilatación de E, es decir, EΘ = {x ∈ Rn : d(x,E) ≤ Θ}. Entonces,

µ+(A) ≥ C

Θ mı́n{µ(A), µ(Ac)}

para todo boreliano A ⊆ Rn.

El segundo es un resultado clásico de concentración para probabilidades más
log-cóncavas que la gaussiana. Lo que dice es que, para este tipo de densidades, los
conjuntos de medida, por ejemplo, entre 0.1 y 0.9, tienen dilataciones que casi llenan
el espacio, por lo que podremos aplicar el resultado anterior. Antecedentes de este
resultado pueden verse en trabajos de Hörmander, Prékopa y Leindler, Gromov y
V. D. Milman, Ledoux (ver [18], [24] y sus citas). La versión exacta como aparece a
continuación está en [13], [10], [1].
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Teorema 5.2. Sea una función convexa φ : Rn → R. Supongamos que la probabili-
dad µ tiene densidad dµ(x) = e−φ(x)− t

2 〈x,x〉 dx, para un t > 0. Entonces, si A ⊂ Rn
cumple

1
10 ≤ µ(A) ≤ 9

10
obtenemos

µ
(
ADt

−1/2
)
≥ 95

100 ,

donde ADt−1/2 es la Dt−1/2-dilatación de A y D > 0 es una constante absoluta.
Cuando tenemos una probabilidad isotrópica y log-cóncava general no podemos

asegurar que tenga ese tipo de densidad. La idea de Eldan es modificar nuestra
probabilidad un poco y pasar de dµ(x) = e−V (x) dx a dµt(x) = Ze−V (x)− t

2 〈x,x〉 dx
para algún t > 0, con Z un factor de normalización. Con esto, notemos que, al
multiplicar por el factor e− t

2 〈x,x〉, podemos aplicar el resultado anterior y, como
ey ∼ 1 + y para y pequeños, no estaremos muy lejos de la densidad inicial. A
continuación calcularemos la constante de Cheeger para µt y luego intentaremos
deducir algo para la de µ.

El problema es que únicamente con estas herramientas no se obtienen buenos
resultados. La idea de Eldan para solventar esta dificultad, teniendo en cuenta que
el centro de gravedad y la matriz de covarianzas de µt van variando, es intentar
corregir esto añadiendo al exponente otro factor lineal, por tanto convexo, de la
siguiente forma:

dµt(x) = Ze−V (x)+〈ct,x〉− t
2 〈x,x〉 dx, t > 0.

Y el hecho capital es suponer que ct ∈ Rn evolucione como un proceso de Itô.
Es decir, a cada instante corregimos el baricentro e introducimos una componente
browniana. El proceso de Itô ct aparecerá como solución de un sistema diferencial
estocástico. Para asegurar la existencia de solución se necesita que la probabilidad
inicial sea de soporte compacto, lo que no es una dificultad añadida, pues las acota-
ciones que se obtengan para las probabilidades log-cóncavas de soporte compacto lo
serán también para todas.
Teorema 5.3 (Eldan). Sea µ una probabilidad isotrópica, log-concava y de soporte
compacto. Consideremos el sistema de ecuaciones diferenciales estocásticas

dct = bt dt+ dWt, c0 = 0,

donde ct ∈ Rn, Wt es un movimiento browniano o proceso de Wiener n-dimensional
y bt ∈ Rn es el baricentro de la probabilidad dµt(x) = ft(x) dx, siendo esta densidad

ft(x) = e〈ct,x〉− t
2 〈x,x〉f(x)∫

Rn e
〈ct,x〉− t

2 〈x,x〉f(x) dx
,

es decir,
bt =

∫
Rn

xft(x) dx ∈ Rn.
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Entonces, este sistema tiene solución única para todo t ≥ 0 y casi todo ω ∈ Ω.
Además, bt y ft(x) son procesos de Itô en Rn. En particular, dft no tiene deriva
sino solo difusión, dft(x) = ft(x)〈x− bt, dWt〉 para casi todo x ∈ Rn, lo que implica
que ft(x) es una martingala.

Las probabilidades µt son log-cóncavas, aunque no isotrópicas. El hecho de que
ft(x) sea una martingala será crucial, dado que tomando esperanza condicional po-
dremos recuperar el instante t = 0, es decir, f(x) = f0(x) = Eωft(x), para todo
t > 0, y casi todo x ∈ Rn.

Tratemos de computar la constante de Cheeger. Para ello tomemos cualquier
boreliano E ⊂ Rn, con µ(E) = 1

2 . En principio, µt(E) no tiene por qué medir 1
2 .

Estudiemos este proceso estocástico gracias al efecto martingala. Llamemos g(t) =
gω,E(t) = µt(E), que también es un proceso de Itô. Entonces,

g(t) =
∫
E

ft(x, ω) dx, t ≥ 0.

Es obvio que g(0) = 1/2. Fijamos un tiempo T > 0 y una constante Θ > 0, que
luego serán elegidos, e intentemos aplicar el teorema 5.1:

µ(EΘ \ E) =
∫
EΘ\E

f(x) dx =
∫
EΘ\E

EωfT (x) dx

= Eω
∫
EΘ\E

fT (x) dx = EωµT (EΘ \ E).

Se trata ahora de acotar inferiormente µT (EΘ \E) en un conjunto de ω con medida
positiva. La forma de hacer esto es aplicar el teorema 5.2. Para ello tenemos que
estar seguros de que µT (E) ∈ [1/10, 9/10] en un conjunto de sucesos ω suficien-
temente grande. Con este fin, estimamos superiormente la probabilidad del suceso
complementario,

{∣∣µT (E)− 1
2
∣∣ > 1

4
}
, y se obtiene

P
{∣∣µT (E)− 1

2
∣∣ > 1

4
}

= P
{∣∣g(T )− 1

2
∣∣ > 1

4
}
≤ 0.1 + P

{
T máx

0≤t≤T
‖At‖op >

1
64

}
,

donde At es la matriz de covarianzas de µt: At = Cov(µt) = EµT
(x− bt)⊗ (x− bt).

La principal estimación que obtuvieron Lee y Vempala es

P
{

máx
0≤t≤Cn−1/2

Tr(A2
t ) ≥ 3n

}
≤ 0.1,

donde C > 0 es una constante absoluta y Tr es la traza de la matriz. Como ‖At‖op ≤√
Tr(A2

t ), eligiendo ahora T = mı́n
{
C, 1

64
√

8

}
1√
n
∼ 1√

n
y llamando FT al suceso

FT =
{ 1

4 ≤ g(T ) ≤ 3
4
}
, se llega a que P{FT } > 0.8.
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Para unas constantes c1 y c2 absolutas, para los ω ∈ FT , µT (Ec1T−1/2 \E) ≥ 95
100

y, por el efecto martingala, llegamos a

µ(Ec2n
1/4
\ E) =

∫
Ec2n1/4\E

f(x) dx =
∫
Ec2n1/4\E

EωfT (x) dx

= Eω
∫
Ec2n1/4\E

fT (x) dx = EωµT (Ec2n
1/4
\ E)

≥ (0.95− 0.5)P(FT ) > 0.45 · 0.8.

A continuación, el teorema 5.1 de E. Milman implica que existe una constante c3
absoluta tal que

µ+(A) ≥ c3n−1/4 mı́n{µ(A), µ(Ac)}

para todo boreliano, con lo que ya se ha obtenido la estimación para la constante de
Cheeger.
Nota. En la referencia [14] hay otra reciente demostración de Eldan de los resultados
de Lee y Vempala y el suyo conjuntamente, acotando la varianza de las funciones
1-Lipschitz, aunque aparece un término logn extra en la estimación final. Esta de-
mostración también se basa en su método de localización y en dos resultados previos
similares a los teoremas 5.1 y 5.2 anteriores, y utiliza el mismo tipo de estimaciones.
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