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Sobre la conjetura de salto espectral
de Kannan, Lovasz y Simonovits

por

David Alonso-Gutiérrez y Jesus Bastero*

RESUMEN.  En este articulo presentamos la conjetura KLS sobre el valor de
la constante en la desigualdad de Poincaré desde el punto de vista analitico-
funcional, asi como su relacién con otras importantes conjeturas dentro del
analisis geométrico asintético, y damos una idea de la demostracién de Eldan,
Lee y Vempala que proporciona la mejor estimaciéon conocida hoy en dia del
valor de dicha constante.

1. INTRODUCCION

La conjetura sobre la que versan estas lineas, denominada conjetura KLS por
las iniciales de Kannan, Lovasz y Simonovits, es uno de los problemas abiertos mas
importantes dentro del analisis geométrico asintético, que es la parte del analisis ma-
temdatico que estudia problemas de alta dimensién y el comportamiento de diferentes
pardmetros y propiedades cuando la dimension tiende a infinito. Esta conjetura tiene
la particularidad de que en su origen, formulacién y estudio aparecen involucradas
diversas partes de las matematicas como son el analisis funcional, la geometria con-
vexa y diferencial, la probabilidad, el calculo diferencial estocéstico y la ciencia de
la computacién teérica. De hecho, es en esta ultima teoria donde tiene sus raices.

En la teoria de algoritmos es importante muestrear eficientemente conjuntos y
distribuciones en alta dimensién. Es decir, generar un vector aleatorio que tenga
una distribucién uniforme sobre un cuerpo convexo en dimensiéon n y calcular la
complejidad de los algoritmos que lo proporcionan.

La presentacién que haremos aqui de la conjetura la enfocaremos desde una
perspectiva analitico-geométrica. En contraposicion, y como lectura complementaria,
recomendamos al lector interesado consultar el instructivo articulo [26], donde los
autores, Lee y Vempala, presentan este mismo problema desde el punto de vista de
la teoria de la complejidad computacional que, desde luego, esta mas cercano a sus
origenes.

En efecto, en su trabajo [20], Kannan, Lovdsz y Simonovits estudian la com-
plejidad de un algoritmo probabilista disenado para el cdlculo del volumen de un
cuerpo convexo en R™. En algiin momento necesitan estimar la relacién existente
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entre la superficie que aparece cuando un cuerpo convexo se divide en dos partes
y el volumen de esas partes. Cuanto mejor se estime esa relaciéon mas se puede afi-
nar la estimacién de la complejidad del algoritmo (ver la seccién 4 y, mejor ain, el
mencionado articulo [26]).

El problema que se presenta es de naturaleza isoperimétrica, dado que estudia
la relacién entre superficies y los volimenes rodeados, y es un hecho clasico y bien
conocido que las desigualdades isoperimétricas tienen una interpretacién analitico-
funcional (ver [6]). Este es, pues, nuestro modo de ver la conjetura y asi la presen-
tamos.

La desigualdad isoperimétrica clasica en R™ dice que, para cada boreliano acotado
ACR",

A7 |
n—1 Z n—1"
Al By

n

donde |A| es el volumen o medida de Lebesgue n-dimensional de A en R, |[AT| es
el contenido exterior de Minkowski definido por
g
|A"| := lim inf M,
e—0 £
siendo A°* = {a + z;a € A,|z| < €} la e-dilatacion de A, By es la bola euclidea
unidad, "1 la superficie esférica de radio 1, y [S"~!| su medida de Hausdorff (es
bien conocido que |AT| coincide con la medida de Hausdorff (n — 1)-dimensional
de la frontera para los borelianos acotados con frontera regular). Esta desigualdad
tiene un equivalente analitico-funcional, la desigualdad de Sobolev en el extremo.
En efecto, probar que
A% > 0lA]T,

con una constante C, para todo boreliano acotado, es equivalente a demostar que

VI = ClIf

n—1
con la misma constante, para cualquier funcién C") de soporte compacto f : R™ —
R, donde || f|| = representa la norma p de la funcién f para p = n/(n — 1); véase,
por ejemplo, [16].
En nuestro caso, el problema isoperimétrico que
nos planteamos es el siguiente. Supongamos que
K C R"™ es un cuerpo convexo, es decir, un conjunto A
compacto y convexo en R™ con interior no vacio, de
volumen o medida de Lebesgue |K| = 1. Dividamos
K en dos partes disjuntas K = AU (K \ A) con
A C K boreliano.
Llamemos, como antes,

[(A+eBy)N K| — |4]

|A*| = lim inf
e—0 £
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Notemos que, en general, |[A*| y |(K \ A)"| podrian no coincidir. Sin embargo, en
situaciones suaves, | AT | representa la medida de la frontera de A dentro de K.
La pregunta que nos hacemos es: jcudl es la mejor constante i que verifica

|AT] > ¢ min{|A[, [ K\ Al} (1)

para cualquier A C K boreliano? Llamaremos constante de Cheeger de K a 1k, pues
fue Cheeger quien introdujo esta desigualdad para desigualdades isoperimétricas en
variedades riemannianas.

Como sucede con la situacion clasica antes presentada, también hay una formu-
lacién analitico-funcional equivalente en este caso. Se conoce como la desigualdad de
Poincaré del cuerpo convexo K.

2. LA DESIGUALDAD DE POINCARE Y LA CONJETURA KLS

Sea K un cuerpo convexo; la desigualdad de Poincaré dice que existe una constan-
te Ck > 0, dependiente de K, tal que, para cualquier funcién de cuadrado integrable
y localmente Lipschitz f que cumpla [ o f(r)dx =0, se verifica

2 2
/Kf(x) deCK/K|Vf(x)| dz

(recordemos que una funcién localmente Lipschitz es diferenciable en casi todo punto,
por el teorema cldsico de Rademacher).

En dimensién n = 1 este resultado se conoce como desigualdad de Wirtinger y
es consecuencia directa de la identidad de Parseval. En efecto, si suponemos que
la funcién es suficientemente regular y cumple la condicién anterior, cambiando de
variable para que K = [0, 27] y desarrollando en serie de Fourier tenemos

o0 o0

/0 @Pdr= 3 P = S 1)

n=-—o00 n=—o0
n#0

o0

< Y P = [ 1P

n=—oo

n#0

En dimensiones superiores, utilizando que menos el laplaciano, —A, en K tiene
asociada una sucesién de autovalores A, g con sus correspondientes autofunciones,
puede darse una demostracién muy similar a la anterior, obteniéndose entonces que

ALK/Kf(m)Qdmg/K\Vf(x)\zda:. @)

La constante C'x que aparece en la desigualdad de Poincaré es, pues, exactamente
igual al inverso del primer autovalor no nulo de —A en ese dominio, y es la mejor
constante posible.
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Existe una relacién muy estrecha y bien conocida entre la constante ¥y que
aparece en la desigualdad (1) y la A x de (2). Para ello adoptamos un punto de
vista y notaciéon probabilista. Denotaremos

1
Ef = ﬁ/Kf(x)dx

y asi la desigualdad de Poincaré se puede escribir como
E(f —Ef)* < CkE|Vf]?  Vf € L?*nNloc. Lips.
0, equivalentemente,
Var f < CxE|Vf|? Vf € L? Nloc. Lips. (3)

(usamos Var para denotar la varianza). La relacién entre las desigualdades (1) y
la (2) o (3) viene dada por un teorema bien conocido y debido a muchos autores:
por ejemplo, Rothaus, Cheeger, Maz’ja, Ledoux, E. Milman (ver [27], [24], [28] y las
referencias ahi incluidas):

TEOREMA 2.1. Sea p una probabilidad de Borel en R™. Las siguientes afirmaciones
son equivalentes:

a) Para cualquier subconjunto boreliano A C R™,
pt(A) = vy min{u(A), p(A°)}.
b) Para cualquier funcién f : R™ — R integrable y localmente Lipschitz,
CLuBp|f = Euf| <EuIV ],

Ademds, Cv, <, < 2C .

Si suponemos una condicion extra sobre la probabilidad i, el ser log-concava
(ver a continuacion su definicion), entonces las dos afirmaciones anteriores son
equivalentes a la desigualdad de Poincaré, es decir, que p verifica

Ay Var, f <E,|Vf[>  VfeL2nNloc. Lips.

Las constantes también son equivalentes: 1, ~ /A1, salvo constantes absolutas,
independientes no solo de p sino incluso de la dimension.

Una probabilidad p en R™ es log-cdncava si es de la forma du(x) = e V@) dg,
donde V : R™ — (—o00,00] es una funcién convexa. Ejemplos de este tipo de proba-
bilidades son:

» la exponencial, du(z) = Ze~1*~t dz, b € R™;

= las gaussianas, du(zr) = Ze (BE=02=b gz b ¢ R" y B matriz simétrica
definida positiva;
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= las distribuciones uniformes sobre cuerpos convexos, du(z) = | K| xx (x) dw,
K un cuerpo convexo.

Estas tultimas son, de hecho, las méas importantes en el sentido de que cualquier
otra probabilidad log-céncava es limite de marginales de uniformes sobre cuerpos
convexos de dimension superior.

Nota. La tercera afirmacion que aparece en el teorema precedente es incluso mas
fuerte. De hecho, E. Milman (ver [28]) demostré que las tres afirmaciones del teorema
anterior son también equivalentes a

Cro0 puBulf = EufI < [V ] lloo

para todas las funciones integrables localmente Lipschitz, con C;, ~ Ci o, sal-
vo constantes absolutas (ver [28]). Este hecho es cierto no solo para probabilidades
log-céncavas, sino en variedades riemannianas con curvatura de Ricci acotada infe-
riormente.

A partir de ahora consideraremos solo probabilidades p log-céncavas en R™. El
objetivo es estimar su constante de Cheeger o, equivalentemente, la mejor constante
de la desigualdad de Poincaré que cumplen. Comenzamos renormalizando p. En
primer lugar, mediante una traslacién podemos suponer que su baricentro es el origen
de coordenadas. A continuacién vamos a renormalizar de acuerdo con su matriz de
covarianzas. Recordemos que la matriz de covarianzas de una probabilidad es

Cov(p) =E,(z—-b) @ (x —b) = (Eyziz; — Eli‘ri]E/lxj)iJ’ ,
que es una matriz simétrica definida positiva y por tanto diagonalizable (b es el
baricentro de p: b = E,z). No es dificil probar que mediante un cambio de variable
lineal se puede conseguir que la matriz de covarianzas de la nueva probabilidad sea
la matriz identidad en R™.

Llamaremos, pues, probabilidades isotrépicas a las que cumplen estas dos condi-
ciones:

» B2 =0,
w Cov(p) = I.

Por el comentario anterior, toda probabilidad log-concava puede transformarse
en isotrépica mediante un cambio de variable afin, y ademaés esta transformacién es
Unica salvo transformaciones ortogonales.

La conjetura KLS puede enunciarse asi:

CONJETURA 1 (Kannan, Lovdsz y Simonovits [20]). Existen constantes absolutas
C1,Cs > 0 tales que, para cualquier probabilidad log-concava e isotrdpica pn en R™,

Cy Var, f <E,|Vf*>  VfeL?nNloc. Lips.
o0, equivalentemente,

put(A) > Cymin{u(A), u(A°)} V boreliano A C R".
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Si no consideramos la normalizacion, la conjetura para cualquier probabilidad log-
céncava seria

Gy

————  Var, f <E,|Vf*> VfeL*nloc. Lips.
[Cov(ully 1 d = BV

0, equivalentemente,

C
ut(A4) > 721/2 min{u(A), u(A)} Y boreliano A C R"
I Cov(p)llop
(la expresion || - ||op representa la norma de la matriz como operador lineal continuo

en el espacio euclideo R™).

Si la conjetura fuera cierta, ademés de las consecuencias que se se derivan desde
el punto de vista de la complejidad computacional, que se explican en la seccion 4,
y las otras conjeturas relacionadas con ella, véase la seccién 3, hay un hecho que se
deduce desde el punto de vista geométrico: de todas las maneras posibles que hay
de dividir un cuerpo convexo en dos partes con el mismo volumen, la que menos
seccién presenta, salvo constantes absolutas, es cortar por hiperplanos.

Kannan, Lovédsz y Simonovits, ver [20], demostraron que si y es una probabilidad
log-céncava en R™ entonces

p(A) >

> oy (), 1A}

para todo boreliano A C R"™. También demostraron que si p es la probabilidad
uniforme sobre un cuerpo convexo K C R" entonces

pt(A) >

> EQCK() min{p(A), u(A%)},

para todo boreliano A C R™, donde 0k (x) es la longitud del mayor intervalo centrado
en x contenido en K.

El mejor resultado general conocido hasta ahora fue demostrado por Lee y Vem-
pala, adaptando el método introducido por Eldan. Se trata del siguiente resultado:

TEOREMA 2.2 (Eldan [13], Lee y Vempala [25]). Sea p una probabilidad isotrépica
y log-concava en R™. Entonces

C
\/—%Varﬂf <E,|Vf)? Vf e L? Nloc. Lips.

Y, equivalentemente,
H4) = 2 minfu(A), p(A° Y boreliano A C R"
p(4) 2 2 min{u(A), p(A°)} oreliano A C R",

siendo C1 y Cy constantes absolutas.
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3. OTRAS CONJETURAS RELACIONADAS

A continuacién presentaremos otras dos conjeturas que aparecieron independien-
temente y que se ha probado que estan intimamente relacionadas con la conjetura
KLS: la conjetura del hiperplano (slicing problem) y la de la varianza (thin shell
conjecture). De hecho, la conjetura de la varianza es un caso particular de la conje-
tura KLS.

3.1. LA CONJETURA DEL HIPERPLANO

La conjetura del hiperplano fue formulada por Bourgain en 1986 cuando probé
el teorema de acotacién en norma p de la funcién maximal de Hardy-Littlewood
sobre cuerpos convexos ([8]). Alll apareci6 la llamada constante de isotropia Lk
de un cuerpo convexo K. Demostré que siempre Lx > C7 > 0 para todo K y en
toda dimensién, siendo C'; una constante absoluta. Bourgain planteé que también
debia ser cierta la acotacién inversa Lx < C5 para todo K y toda dimensién, con
una constante absoluta Cs. Asi formulada, esta conjetura aparecié en [30]. Puede
reformularse de una manera més sencilla, pero equivalente:

CONJETURA 2 (Conjetura del hiperplano, Bourgain, 1986). Existe una constante
universal C > 0 tal que, para todo cuerpo convero K C R™ de volumen |K| =1, se
puede encontrar un hiperplano (n — 1)-dimensional H que verifica

|KﬂH|n_1 > C,

es decir, las secciones (n — 1)-dimensionales no pueden ser todas a la vez uniforme-
mente pequenas.

Bourgain dio la primera estimacién conocida:

TEOREMA 3.1 (Bourgain [9]). FEziste una constante universal C > 0 tal que, para
todo cuerpo convero K C R™ de volumen |K| =1, se puede encontrar un hiperplano
H que verifica

C

KNH|p > —o
| 12 nt/4logn

con C > 0 constante absoluta.

La mejor estimacion hasta el momento fue obtenida por Klartag y ahora, como
consecuencia del teorema 2.2, se tiene una demostracién alternativa:

TeOREMA 3.2 (Klartag [21], Eldan, Lee y Vempala [13], [25]). Eziste una constante
universal C > 0 tal que, para todo cuerpo convexo K C R™ de volumen |K| =1, se
puede encontrar un hiperplano H que verifica

C
‘KﬂH|n71 Z W.
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3.2. LA CONJETURA DE LA VARIANZA

Esta nueva conjetura esta centrada en cémo se distribuye la masa en los cuerpos
convexos de gran dimensiéon. En particular, ;como se distribuye la variable aleatoria
|z| con respecto a la probabilidad uniforme sobre un cuerpo convexo?

En 2003 Antilla, Ball y Perissinaki (ver [3]) conjeturaron que en las probabilida-
des log-céncavas e isotrépicas la masa estaba concentrada en una estrecha concha
(thin shell) mas de lo que la trivial estimacién Var, |z| < E,|z|? sugerfa. Bobkov y
Koldobsky formularon la siguiente conjetura (ver [7]):

CONJETURA 3. Eziste una constante absoluta C' > 0 tal que, para toda probabilidad
log-concava e isotropica p en R™, se tiene

Ey |l - va|* < C. (4)

En particular este hecho implica que

at

lo que indica que hay una gran concentracién de masa en una estrecha corona o
concha estérica.

El mejor resultado obtenido hasta la fecha se deduce del teorema 2.2:

la] _ 1‘ > t} <2 CVIHIE gy s,
n

TEOREMA 3.3. Para probabilidades log-concavas isotrépicas,

E, |lz| - va|* < Cva,

con C' > 0 constante absoluta. Si la probabilidad es solo log-concava,

2
By |e] = (Bula) | < OVlICov()l,,
Este resultado mejora estimaciones anteriores de varios autores: Klartag, Fleury,
Guédon y E. Milman (ver [22], [23], [17], [19)).
La conjetura de la varianza es més débil que la KLS, dado que no es dificil ver
que (4) es equivalente a
Cy Var, |z|* <n,

que es el caso de la funcién f(z) = |z|%. Por otro lado, la conjetura de la varianza
es mas fuerte que la conjetura del hiperplano de manera global. Esto significa que si
conseguimos una estimacién para todas las probabilidades log-concavas isotrépicas,
la misma estimacion es cierta para la conjetura del hiperplano para todas ellas.

Ademés hay una manera directa, aunque no sencilla (ver [4]), de probar que, para
una  fijada, la estimacion que se obtiene en la conjetura KLS implica otra estimacion
para la conjetura del hiperplano, que es de caracter exponencial. Para consultar
referencias y més informacioén sobre estas conjeturas puede verse, por ejemplo, [10],
[1], [2]. Estos hechos vienen reflejados en la figura 1.
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Conjetura de salto
espectral de Kannan,
Lovész y Simonovits

log® n. (globalmente) (individualmente)

(individualmente)

Conjetura N Conjetura
de la varianza (globalmente) del hiperplano

Figura 1: Implicaciones entre las conjeturas.

4. MOTIVACION: ALGORITMO DE CALCULO DE VOLUMENES

El origen de la conjetura KLS se halla en el problema de la construcciéon de un
algoritmo eficiente (es decir, con bajo coste computacional) para calcular el volumen
de un cuerpo convexo en dimensién n.

Maés concretamente, se trata de disenar un algoritmo que reciba como entrada
un cuerpo convexo K C R™, un punto xg € K y un pardmetro € > 0 que indique el
error permitido, y devuelva como salida un nimero V tal que

(1-¢)|K| <V <(1+¢)K]|

El cuerpo convexo se le proporciona al algoritmo como entrada en forma de oraculo
de la pertenencia (membership oracle), es decir, como otro algoritmo que recibe como
entrada un punto x € R” y devuelve como salida

() = 1 sizeK,
X =0 siz ¢ K.

La complejidad del algoritmo mide el niimero de operaciones aritméticas y llamadas
al oraculo que se hagan.

Es bien conocido que cualquier algoritmo determinista tiene una complejidad
exponencial, ver [15] y [5]. Sin embargo, en 1989, Dyer, Frieze y Kannan (ver [12])
construyeron un algoritmo aleatorizado con complejidad polinomial:

TEOREMA 4.1. FExiste un algoritmo que recibe como entrada un cuerpo convero
K C R", un punto zyg € K, un pardmetro de error € > 0 y un pardmetro de
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probabilidad 0 < § < 1, y devuelve como salida un nimero aleatorio V' tal que
(1=K <V <(1+e)|K]

con probabilidad mayor que 1 — . Ademds, este algoritmo tiene complejidad polino-
mial en n, %, Y log%.

La construcciéon de este algoritmo estaba basada en la construccién de un al-
goritmo de muestreo (sampling algorithm). Es decir, un algoritmo que reciba como
entrada un cuerpo convexo K C R", un punto x¢g € K y un parametro de error ¢, y
devuelva como salida un punto aleatorio x € R™ distribuido con una probabilidad v

tal que
Xk (2) )
d v, dx | := su
v ( K| Ack

(drv representa la distancia en variacion total de las dos medidas).

La forma de construir un algoritmo de muestreo es mediante un camino aleatorio
(random walk) de la siguiente manera: partiendo del punto zq recibido como entrada,
se toma un punto aleatorio x; distribuido mediante una distribucién de probabilidad
elegida dependiente de xy. A continuacién, mediante una llamada al ordculo de
pertenencia, se comprueba si 1 pertenece o no pertenece a K. Si z; € K se mantiene
su valor. Si no, se toma x; = x(. Repitiendo el proceso, construyendo zo a partir
de z1, vy Tp41 a partir de x,, se construye una sucesién de vectores aleatorios en
la que la distribuciéon de cada vector x,; depende tinicamente del vector aleatorio
anterior. Bajo ciertas condiciones la distribucién de z,, converge en variacién total
a la distribucién de probabilidad uniforme sobre K. Cuanto mas rapida sea esta
convergencia menor serd la complejidad computacional del algoritmo de muestreo.

Una posible manera de contruir este camino aleatorio seria tomando el punto
ZTpy1 a partir de x,, uniformemente distribuido en una bola de centro x( y radio p
(ball walk). En el trabajo [12] los autores construyen un camino aleatorio sobre una
red de cubos para probar que la distribuciéon del punto x; converge a la distribuciéon
uniforme sobre K en tiempo polinomial. Se necesita probar que, para un cuerpo
convexo con frontera suave construido dentro del cuerpo K inicial, la probabilidad
uniforme sobre su superficie satisface una desigualdad isoperimétrica de tipo Chee-
ger. Los autores conjeturaron que cualquier cuerpo convexo satisface este tipo de
desigualdad con constante un polinomio fijo en n y en el didmetro de K. Si dicha
conjetura fuese cierta se podria simplificar su prueba y demostrar una velocidad de
convergencia mayor que la que obtuvieron. No obstante, con este tipo de caminos
aleatorios no se puede mejorar la estimaciéon de la complejidad computacional de
orden O(n®).

Kannan, Lovasz y Simonovits mejoraron estas estimaciones construyendo otro
tipo de caminos aleatorios y conjeturaron una cota inferior para la constante de

|‘1|
4 — <
V( ) | ‘ S €

Cheeger Cy/|| Cov(u)”é{f, donde p es la probabilidad uniforme en K. Si la conjetura
KLS fuese cierta, se obtendria una complejidad computacional para el algoritmo de
muestreo de orden O(n?). La mejor estimacion hasta el momento de la complejidad
computacional del algoritmo de muestreo es de orden O(n€) para una constante ¢
entre 2 y 3.
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Merece la pena senialar que, si la conjetura KLS fuese cierta, la complejidad de
orden O(n?) en el algoritmo de muestreo permitirfa construir un algoritmo de calcu-
lo de volumen de complejidad O*(n?), donde O* suprime la factores logaritmicos.
En [11], Cousins y Vempala construyeron un algoritmo de cdlculo de volumen con es-
ta complejidad, evitando asi el problema de validar la veracidad de la conjetura KLS.
No obstante, la construccién de algoritmos de muestreo eficientes sigue siendo una
cuestiéon importante en ciencias de la computacién tedrica, ya que otros problemas
se reducen al muestreo.

5. UNA IDEA DE LA DEMOSTRACION DEL RESULTADO DE ELDAN,
LEE Y VEMPALA, TEOREMA 2.2

Terminamos esta presentacién de la conjetura KLS dando una idea de la demos-
tracién de Lee y Vempala, que se basa en el método de localizacién de Eldan. Fue
este autor, Eldan, quien presenté este método, que le permitié demostrar que, salvo
factores logaritmicos, la mejor acotacién universal para la conjetura de la varianza
es equivalente a la mejor acotacién para la conjetura KLS, ver [13]. Lee y Vempala,
utilizando la localizacién de Eldan con un pequeno cambio en el sistema diferen-
cial estocédstico y dando una acotacién a los momentos de orden tres, consiguieron
demostrar el teorema.

La idea de Eldan que pasaremos a comentar se basa en dos resultados previos. El
primero de ellos es que, para dar una estimacién de la constante de isoperimetria, el
papel relevante lo juegan los conjuntos de medida 1/2. Concretamente, si controla-
mos inferiormente las dilataciones de estos conjuntos, podemos estimar la constante
de Cheeger de la medida.

TEOREMA 5.1 (E. Milman [29]). Sea p una probabilidad isotrépica y log-concava
en R™. Supongamos que hay dos constantes ©,C > 0 para las que la desigualdad

pEC\E)>C

se cumple para cualquier subconjunto boreliano E C R™ con p(E) = %, donde E®
es la ©-dilatacion de E, es decir, E® = {x € R" : d(z, E) < ©}. Entonces,

pH(A) 2 min{u(A), p(A4%)}

para todo boreliano A C R™.

El segundo es un resultado cldsico de concentracién para probabilidades mds
log-concavas que la gaussiana. Lo que dice es que, para este tipo de densidades, los
conjuntos de medida, por ejemplo, entre 0.1 y 0.9, tienen dilataciones que casi llenan
el espacio, por lo que podremos aplicar el resultado anterior. Antecedentes de este
resultado pueden verse en trabajos de Hérmander, Prékopa y Leindler, Gromov y
V. D. Milman, Ledoux (ver [18], [24] y sus citas). La versién exacta como aparece a
continuacion estd en [13], [10], [1].
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TEOREMA 5.2. Sea una funcion conveza ¢ : R™ — R. Supongamos que la probabili-
dad p tiene densidad du(z) = e~ *@)~ 3(2) dx, para un t > 0. Entonces, si A C R"

cumple
1 9
— < pu(A) < =
10 =MA) =35
obtenemos
p(aP77) 2 o
100

donde AP*™"* es la Dt=V/2_dilatacion de A y D > 0 es una constante absoluta.

Cuando tenemos una probabilidad isotrépica y log-céncava general no podemos
asegurar que tenga ese tipo de densidad. La idea de Eldan es modificar nuestra
probabilidad un poco y pasar de du(z) = eV dz a du(x) = Ze V@~ 2@2) gy
para algin ¢ > 0, con Z un factor de normalizaciéon. Con esto, notemos que, al
multiplicar por el factor e’%@’@, podemos aplicar el resultado anterior y, como
ey ~ 1+ y para y pequenos, no estaremos muy lejos de la densidad inicial. A
continuaciéon calcularemos la constante de Cheeger para p; y luego intentaremos
deducir algo para la de u.

El problema es que tUnicamente con estas herramientas no se obtienen buenos
resultados. La idea de Eldan para solventar esta dificultad, teniendo en cuenta que
el centro de gravedad y la matriz de covarianzas de p; van variando, es intentar
corregir esto anadiendo al exponente otro factor lineal, por tanto convexo, de la
siguiente formas:

dp(z) = Ze™V@H o) =5 gy t>0.

Y el hecho capital es suponer que ¢; € R"™ evolucione como un proceso de Ito.
Es decir, a cada instante corregimos el baricentro e introducimos una componente
browniana. El proceso de It6 ¢; aparecerd como soluciéon de un sistema diferencial
estocastico. Para asegurar la existencia de soluciéon se necesita que la probabilidad
inicial sea de soporte compacto, lo que no es una dificultad anadida, pues las acota-
ciones que se obtengan para las probabilidades log-céncavas de soporte compacto lo
seran también para todas.

TEOREMA 5.3 (Eldan). Sea p una probabilidad isotrépica, log-concava y de soporte
compacto. Consideremos el sistema de ecuaciones diferenciales estocdsticas

dCt = bt dt + th, Co = 0,

donde ¢; € R™, Wy es un movimiento browniano o proceso de Wiener n-dimensional
y b € R™ es el baricentro de la probabilidad du.(x) = fi(x) dz, siendo esta densidad

eleem) =3 (@o) £ (1)

fe(z) = Jon €lc0®) =382 £ () da

es decir,

by = / xfi(x)dr € R™.
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Entonces, este sistema tiene solucion unica para todo t > 0 y casi todo w € €.
Ademds, by y fi(x) son procesos de Ité en R™. En particular, df; no tiene deriva
sino solo difusidn, df(x) = fi(x){x — by, dWy) para casi todo x € R™, lo que implica
que fi(x) es una martingala.

Las probabilidades u; son log-céncavas, aunque no isotropicas. El hecho de que
fi(z) sea una martingala serd crucial, dado que tomando esperanza condicional po-
dremos recuperar el instante ¢t = 0, es decir, f(z) = fo(z) = E, fi(x), para todo
t > 0, y casi todo x € R™.

Tratemos de computar la constante de Cheeger. Para ello tomemos cualquier
boreliano £ C R™, con u(FE) = % En principio, p:(F) no tiene por qué medir %
Estudiemos este proceso estocdstico gracias al efecto martingala. Llamemos ¢(t) =
9w, (t) = pe(E), que también es un proceso de Itd. Entonces,

g(t) = [Eft(:v,w) de, t>0.

Es obvio que g(0) = 1/2. Fijamos un tiempo 7' > 0 y una constante © > 0, que
luego seran elegidos, e intentemos aplicar el teorema 5.1:

wEe B = [

f(z)dx = / E, fr(z)dx
EO\E EO\E

:Ew/ fr(z)de = Eyur(E® \ E).
E®\E

Se trata ahora de acotar inferiormente p7(E® \ E) en un conjunto de w con medida
positiva. La forma de hacer esto es aplicar el teorema 5.2. Para ello tenemos que
estar seguros de que pr(E) € [1/10,9/10] en un conjunto de sucesos w suficien-
temente grande. Con este fin, estimamos superiormente la probabilidad del suceso
complementario, {|ur(E) — | > 1}, v se obtiene

P{lur(E) ~ 41> 5} =P {lo(T) ~ 4] > 1} < 00+ P{T iy Ll > 55 .

donde A; es la matriz de covarianzas de p;: Ay = Cov(pe) = E,p (2 —by) ® (@ — by).
La principal estimacién que obtuvieron Lee y Vempala es

IP{ max Tr(A?) > 3n} < 0.1,

0<t<Cn—1/2

donde C' > 0 es una constante absoluta y Tr es la traza de la matriz. Como || A]|op <
Tr(A2), eligiendo ahora T' = min {C, 64—{/5} ﬁ ~ ﬁ y llamando Fr al suceso

Fr={3 <g(T) <2}, sellega a que P{Fr} > 0.8.
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Para unas constantes c; y ¢o absolutas, para los w € Fr, /LT(EclTA/2 \E) > 2
y, por el efecto martingala, llegamos a

02n1/4 o o
pErtt = [ e [ B

Eecan

:Ew/ 1/4 fT(m)dx:EwMT(EQ"lM \E)
Eecan \E
> (0.95 — 0.5)P(Fr) > 0.45 - 0.8.

A continuacion, el teorema 5.1 de E. Milman implica que existe una constante cs

absoluta tal que
pH(A) = esn™ Y  min{p(A), p(A)}

para todo boreliano, con lo que ya se ha obtenido la estimacién para la constante de
Cheeger.

Nota. En la referencia [14] hay otra reciente demostracion de Eldan de los resultados
de Lee y Vempala y el suyo conjuntamente, acotando la varianza de las funciones
1-Lipschitz, aunque aparece un término logn extra en la estimacién final. Esta de-
mostracién también se basa en su método de localizacién y en dos resultados previos
similares a los teoremas 5.1 y 5.2 anteriores, y utiliza el mismo tipo de estimaciones.
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